11,253 research outputs found
Electronic and phononic Raman scattering in detwinned YBaCuO and YCaBaCuO: s-wave admixture to the -wave order parameter
Inelastic light (Raman) scattering has been used to study electronic
excitations and phonon anomalies in detwinned, slightly overdoped
YBaCuO and moderately overdoped
YCaBaCuO single crystals. In both samples
modifications of the electronic pair-breaking peaks when interchanging the a-
and b-axis were observed. The lineshapes of several phonon modes involving
plane and apical oxygen vibrations exhibit pronounced anisotropies with respect
to the incident and scattered light field configurations. Based on a
theoretical model that takes both electronic and phononic contributions to the
Raman spectra into account, we attribute the anisotropy of the
superconductivity-induced changes in the phonon lineshapes to a small s-wave
admixture to the pair wave-function. Our theory allows us to
disentangle the electronic Raman signal from the phononic part and to identify
corresponding interference terms. We argue that the Raman spectra are
consistent with an s-wave admixture with an upper limit of 20 percent.Comment: accepted in Phys. Rev. B, 11 page
Bioethanol from Germinated Grains.
The most well-known way to produce bioethanol is by the enzymatic hydrolysis and fermentation of starch. In a new project “BioConcens” (2007) sponsored by DARCOF (DAnish Research Center for Organic Food and farming) one aim is to develop a combined ethanol and biogas production for use in organic farming using starch containing biomass. Natural enzymes from cereals will be used for hydrolysis of starch to glucose in accordance with technology in brewing technology. Commercial enzymes are often produced from gene-modified organisms and will therefore not be used in the suggested organic context or process.
A preliminary study was performed in which grains of wheat, rye, and barley were germinated using traditional methods applied in malting for beer production. During malting the amylase enzymes present in the grain are activated (autoamylolytic effect). Three steps were applied in the malting process; steeping, germination, and drying of the grains. After malting the grains were milled and mixed with water to 13% DM, cooked at 57.5C for 2 hours (to activate the enzymes), and cooled to 30C before adding Bakers Yeast.
The results of this study indicate that efficient hydrolysis of starch can be achieved by activation of autoamylolytic enzymes in cereal grains after a malting process. The ethanol yields obtained in the autoamylolytic hydrolysis was comparable (or slightly higher) to that of reference experiments using commercial enzymes (amylases). The highest ethanol yield was obtained with wheat (0.34 g/g DM grain), followed by barley (0.31 g/g DM grain), and rye (0.29 g/g DM grain)
THE DEEP STRUCTURE OF AN ENNOVATTVE ACCOUNTING INFORMATION SYSTEM
For centuries accounting was the only formal information system in existence for business enterprises. Now accounting is often only a small part of an integrated information system. While numerous attempts have been made to clarify the exact structure of accounting, they have all been encumbered by past traditions that, while optimal under manual methods, did not do justice to accounting in a database environment. This paper shows how an informal model of accounting as movement of sand in a sandbox can be mapped to an ontologically complete financial accounting information system. Finally, the new model is contrasted with three competing models, and its implications for design and use of accounting information systems are discussed
Brca2 and Trp53 deficiency cooperate in the progression of mouse prostate tumourigenesis.
Epidemiological studies have shown that one of the strongest risk factors for prostate cancer is a family history of the disease, suggesting that inherited factors play a major role in prostate cancer susceptibility. Germline mutations in BRCA2 predispose to breast and ovarian cancer with its predominant tumour suppressor function thought to be the repair of DNA double-strand breaks. BRCA2 has also been implicated in prostate cancer etiology, but it is unclear the impact that mutations in this gene have on prostate tumourigenesis. Here we have undertaken a genetic analysis in the mouse to determine the role of Brca2 in the adult prostate. We show that deletion of Brca2 specifically in prostate epithelia results in focal hyperplasia and low-grade prostate intraepithelial neoplasia (PIN) in animals over 12 months of age. Simultaneous deletion of Brca2 and the tumour suppressor Trp53 in prostate epithelia gave rise to focal hyperplasia and atypical cells at 6 months, leading to high-grade PIN in animals from 12 months. Epithelial cells in these lesions show an increase in DNA damage and have higher levels of proliferation, but also elevated apoptosis. Castration of Brca2;Trp53 mutant animals led to regression of PIN lesions, but atypical cells persisted that continued to proliferate and express nuclear androgen receptor. This study provides evidence that Brca2 can act as a tumour suppressor in the prostate, and the model we describe should prove useful in the development of new therapeutic approaches
The strength of the radial-breathing mode in single-walled carbon nanotubes
We show by ab initio calculations that the electron-phonon coupling matrix
element M of the radial breathing mode in single-walled carbon nanotubes
depends strongly on tube chirality. For nanotubes of the same diameter the
coupling strength |M|^2 is up to one order of magnitude stronger for zig-zag
than for armchair tubes. For (n,m) tubes M depends on the value of (n-m) mod 3,
which allows to discriminate semiconducting nano tubes with similar diameter by
their Raman scattering intensity. We show measured resonance Raman profiles of
the radial breathing mode which support our theoretical predictions
Characterization of 1.55-μm pulses from a self-seeded gain-switched Fabry-Pérot laser diode using frequency-resolved optical gating
The intensity and frequency chirp of picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode have been directly measured using the technique of frequency-resolved optical gating. Measurements over an output sidemode suppression ratio (SMSR) range of 15-35 dB show that higher SMSR's are associated with an increasingly linear frequency chirp across the output pulses. This complete pulse characterization allows the conditions for optimum pulse compression to be determined accurately, and indicates that transform-limited, pedestal free pulses can be obtained at an SMSR of 35 dB
The phonon dispersion of graphite by inelastic x-ray scattering
We present the full in-plane phonon dispersion of graphite obtained from
inelastic x-ray scattering, including the optical and acoustic branches, as
well as the mid-frequency range between the and points in the Brillouin
zone, where experimental data have been unavailable so far. The existence of a
Kohn anomaly at the point is further supported. We fit a fifth-nearest
neighbour force-constants model to the experimental data, making improved
force-constants calculations of the phonon dispersion in both graphite and
carbon nanotubes available.Comment: 7 pages; submitted to Phys. Rev.
Renormalization of the electron-phonon coupling in the one-band Hubbard model
We investigate the effect of electronic correlations on the coupling of
electrons to Holstein phonons in the one-band Hubbard model. We calculate the
static electron-phonon vertex within linear response of Kotliar-Ruckenstein
slave-bosons in the paramagnetic saddle-point approximation. Within this
approach the on-site Coulomb interaction U strongly suppresses the coupling to
Holstein phonons at low temperatures. Moreover the vertex function does not
show particularly strong forward scattering. Going to larger temperatures
kT\sim t we find that after an initial decrease with U, the electron-phonon
coupling starts to increase with U, confirming a recent result of Cerruti,
Cappelluti, and Pietronero. We show that this behavior is related to an unusual
reentrant behavior from a phase separated to a paramagnetic state upon
decreasing the temperature.Comment: 4 pages, 6 figure
Mining cosmic dust from the blue ice lakes of Greenland
Extraterrestrial material, most of which invisible settles to Earth's surface as dust particles smaller than a millimeter in size were investigated. Particles of 1/10 millimeter size fall at a rate of one/sq m/yr collection of extraterrestrial dust is important because the recovered cosmic dust particles can provide important information about comets. Comets are the most important source of dust in the solar system and they are probably the major source of extraterrestrial dust that is collectable at the Earth's surface. A new collection site for cosmic dust, in an environment where degradation by weathering is minimal is reported. It is found that the blue ice lakes on the Greenland ice cap provide an ideal location for collection of extraterrestrial dust particles larger than 0.1 mm in size. It is found that the lakes contain large amounts of cosmic dust which is much better preserved than similar particles recovered from the ocean floor
- …