187 research outputs found

    Spectral Signatures of the Diffusional Anomaly in Water

    Get PDF
    Analysis of power spectrum profiles for various tagged particle quantities in bulk SPC/E water is used to demonstrate that variations in mobility associated with the diffusional anomaly are mirrored in the exponent of the \onebyf\ region. Monitoring of \onebyf behaviour is shown to be a simple and direct method for linking phenomena on three distinctive length and time scales: the local molecular environment, hydrogen bond network reorganisations and the diffusivity. The results indicate that experimental studies of supercooled water to probe the density dependence of 1/fα1/f^\alpha spectral features, or equivalent stretched exponential behaviour in time-correlation functions, will be of interest.Comment: 5 Pages, 4 Figure

    Caracterização do sistema de controle de pragas adotado pelos produtores de soja do Estado de Roraima.

    Get PDF
    Não há informações sobre os critérios adotados pelos produtores de soja do Estado de Roraima para o controle das pragas. Por isso, o objetivo deste trabalho foi monitorar o sistema de controle de pragas adotado pelos produtores dessa leguminosa no Estado, ao tempo em que foram caracterizados aspectos sócioeconômicos da atividade produtiva no Estado.bitstream/item/31812/1/doc342010.pd

    O(d,d)-invariance in inhomogeneous string cosmologies with perfect fluid

    Full text link
    In the first part of the present paper, we show that O(d,d)-invariance usually known in a homogeneous cosmological background written in terms of proper time can be extended to backgrounds depending on one or several coordinates (which may be any space-like or time-like coordinate(s)). In all cases, the presence of a perfect fluid is taken into account and the equivalent duality transformation in Einstein frame is explicitly given. In the second part, we present several concrete applications to some four-dimensional metrics, including inhomogeneous ones, which illustrate the different duality transformations discussed in the first part. Note that most of the dual solutions given here do not seem to be known in the literature.Comment: 25 pages, no figures, Latex. Accepted for publication in General Relativity and Gravitatio

    Interação de pireno e fenantreno com argilas em suspensão.

    Get PDF
    O objetivo desse trabalho é investigar a formação de micelas e ligação entre os HPA e as argilas

    Modeling the evolution of a classic genetic switch

    Get PDF
    Abstract Background The regulatory network underlying the yeast galactose-use pathway has emerged as a model system for the study of regulatory network evolution. Evidence has recently been provided for adaptive evolution in this network following a whole genome duplication event. An ancestral gene encoding a bi-functional galactokinase and co-inducer protein molecule has become subfunctionalized as paralogous genes (GAL1 and GAL3) in Saccharomyces cerevisiae, with most fitness gains being attributable to changes in cis- regulatory elements. However, the quantitative functional implications of the evolutionary changes in this regulatory network remain unexplored. Results We develop a modeling framework to examine the evolution of the GAL regulatory network. This enables us to translate molecular changes in the regulatory network to changes in quantitative network function. We computationally reconstruct an inferred ancestral version of the network and trace the evolutionary paths in the lineage leading to S. cerevisiae. We explore the evolutionary landscape of possible regulatory networks and find that the operation of intermediate networks leading to S. cerevisiae differs substantially depending on the order in which evolutionary changes accumulate; in particular, we systematically explore evolutionary paths and find that some network features cannot be optimized simultaneously. Conclusions We find that a computational modeling approach can be used to analyze the evolution of a well-studied regulatory network. Our results are consistent with several experimental studies of the evolutionary of the GAL regulatory network, including increased fitness in Saccharomyces due to duplication and adaptive regulatory divergence. The conceptual and computational tools that we have developed may be applicable in further studies of regulatory network evolution

    Identification of novel targets for breast cancer by exploring gene switches on a genome scale

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An important feature that emerges from analyzing gene regulatory networks is the "switch-like behavior" or "bistability", a dynamic feature of a particular gene to preferentially toggle between two steady-states. The state of gene switches plays pivotal roles in cell fate decision, but identifying switches has been difficult. Therefore a challenge confronting the field is to be able to systematically identify gene switches.</p> <p>Results</p> <p>We propose a top-down mining approach to exploring gene switches on a genome-scale level. Theoretical analysis, proof-of-concept examples, and experimental studies demonstrate the ability of our mining approach to identify bistable genes by sampling across a variety of different conditions. Applying the approach to human breast cancer data identified genes that show bimodality within the cancer samples, such as estrogen receptor (ER) and ERBB2, as well as genes that show bimodality between cancer and non-cancer samples, where tumor-associated calcium signal transducer 2 (TACSTD2) is uncovered. We further suggest a likely transcription factor that regulates TACSTD2.</p> <p>Conclusions</p> <p>Our mining approach demonstrates that one can capitalize on genome-wide expression profiling to capture dynamic properties of a complex network. To the best of our knowledge, this is the first attempt in applying mining approaches to explore gene switches on a genome-scale, and the identification of TACSTD2 demonstrates that single cell-level bistability can be predicted from microarray data. Experimental confirmation of the computational results suggest TACSTD2 could be a potential biomarker and attractive candidate for drug therapy against both ER+ and ER- subtypes of breast cancer, including the triple negative subtype.</p

    Natural Polymorphism in BUL2 Links Cellular Amino Acid Availability with Chronological Aging and Telomere Maintenance in Yeast

    Get PDF
    Aging and longevity are considered to be highly complex genetic traits. In order to gain insight into aging as a polygenic trait, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard strain RM11 and a laboratory strain S288c, to identify quantitative trait loci that control chronological lifespan. Among the major loci that regulate chronological lifespan in this cross, one genetic linkage was found to be congruent with a previously mapped locus that controls telomere length variation. We found that a single nucleotide polymorphism in BUL2, encoding a component of an ubiquitin ligase complex involved in trafficking of amino acid permeases, controls chronological lifespan and telomere length as well as amino acid uptake. Cellular amino acid availability changes conferred by the BUL2 polymorphism alter telomere length by modulating activity of a transcription factor Gln3. Among the GLN3 transcriptional targets relevant to this phenotype, we identified Wtm1, whose upregulation promotes nuclear retention of ribonucleotide reductase (RNR) components and inhibits the assembly of the RNR enzyme complex during S-phase. Inhibition of RNR is one of the mechanisms by which Gln3 modulates telomere length. Identification of a polymorphism in BUL2 in this outbred yeast population revealed a link among cellular amino acid availability, chronological lifespan, and telomere length control
    corecore