3,691 research outputs found
Assessing the material loss of the modular taper interface in retrieved metal on metal hip replacements
Measuring the amount of material loss in the case of revised hip replacements is considered to be a prerequisite of understanding and assessing the true in vivo performance of the implant. This paper outlines a method developed by the authors for quantifying taper material loss as well as more general taper interface parameters. Previous studies have mostly relied on visual inspection to assess the material loss at the taper interface, whereas this method aims to characterize any surface and form changes through the use of an out-of-roundness measurement machine. Along with assessing the volumetric wear, maximum linear penetration and taper contact length can also be determined. The method was applied to retrieved large head metal-on-metal femoral heads in order to quantify the material loss at this junction. Material loss from the female femoral head taper can be characterized as a localized area that is in contact with the stem taper surface. The study showed that this method has good repeatability and a low level of interoperability variation between operators
Self-interaction chromatography as a tool for optimizing conditions for membrane protein crystallization
The second virial coefficient, or B value, is a measurement of how well a protein interacts with itself in solution. These interactions can lead to protein crystallization or precipitation, depending on their strength, with a narrow range of B values (the `crystallization slot') being known to promote crystallization. A convenient method of determining the B value is by self-interaction chromatography. This paper describes how the light-harvesting complex 1-reaction centre core complex from Allochromatium vinosum yielded single straight-edged crystals after iterative cycles of self-interaction chromatography and crystallization. This process allowed the rapid screening of small molecules and detergents as crystallization additives. Here, a description is given of how self-interaction chromatography has been utilized to improve the crystallization conditions of a membrane protein
Decomposition of Time-Series by Level and Change
This article examines whether decomposing time series data into two parts – level and change – produces forecasts that are more accurate than those from forecasting the aggregate directly. Prior research found that, in general, decomposition reduced forecasting errors by 35%. An earlier study on decomposition into level and change found a forecast error reduction of 23%. The current study found that nowcasts consisting of a simple average of estimates from preliminary surveys and econometric models of the U.S. lodging market, improved the accuracy of final estimates of levels. Forecasts of change from an econometric model and the improved nowcasts reduced forecast errors by 29% when compared to direct forecasts of the aggregate. Forecasts of change from an extrapolation model and the improved nowcasts reduced forecast errors by 45%. On average then, the error reduction for this study was 37%
Thickness-dependent thermal properties of amorphous insulating thin films measured by photoreflectance microscopy
In this work, we report on the measurement of the thermal conductivity of thin insulating films of SiO2 obtained by thermal oxidation, and Al2O3 grown by atomic layer deposition (ALD), both on Si wafers. We used photoreflectance microscopy to determine the thermal properties of the films as a function of thickness in the 2 nm to 1000 nm range. The effective thermal conductivity of the Al2O3 layer is shown to decrease with thickness down to 70% for the thinnest layers. The data were analyzed upon considering that the change in the effective thermal conductivity corresponds to an intrinsic thermal conductivity associated to an additional interfacial thermal resistance. The intrinsic conductivity and interfacial thermal resistance of SiO2 were found to be equal to 0.95 W/m·K and 5.1 × 10− 9 m2K/W respectively; those of Al2O3 were found to be 1.56 W/m·K and 4.3 × 10− 9 m2K/W
The quadrupole resonator: Construction, RF System Field Calculations and First Applications
The quadrupole resonator allows measurement of the RF properties of superconducting (sc) films deposited on disk-shaped metallic substrates. We describe the construction of the apparatus, the brazing and electron-beam welding procedures, the arrangements for compensating mechanical tolerances of samples and for assuring reproducible sample illumination. We explain the special features of the RF sy stem and give the results of field calculations with a 3D cavity code. Finally we present first measurements of Nb on Cu film samples and compare them with calibrations done with a bulk Nb sample
Measurements of Protein-Protein Interactions by Size Exclusion Chromatography
A method is presented for determining second virial coefficients B_2 of
protein solutions from retention time measurements in size exclusion
chromatography (SEC). We determine B_2 by analyzing the concentration
dependance of the chromatographic partition coefficient. We show the ability of
this method to track the evolution of B_2 from positive to negative values in
lysozyme and bovine serum albumin solutions. Our SEC results agree
quantitatively with data obtained by light scattering.Comment: 18 pages including 1 table and 5 figure
- …