585 research outputs found

    B-fields and Dust in Interstellar Filaments Using Dust Polarization (BALLAD-POL). I. The Massive Filament G11.11–0.12 Observed by SOFIA/HAWC+

    Get PDF
    We report the first measurement of polarized thermal dust emission toward the entire infrared dark cloud G11.11−0.12 taken by the polarimeter SOFIA/HAWC+ at 214 μm. The obtained magnetic fields (B-fields) from the polarized emission of the early-stage and massive filament tend to be perpendicular to its spine. We produce a map of B-field strengths for the center region of the filament. The strengths vary in the range of 100–600 μG and are strongest along the filament's spine. The central region is sub-Alfvénic and mostly subcritical, meaning that B-fields dominate over turbulence and are strong enough to resist gravitational collapse. The alignment and properties of dust grains in the filament are studied using radiative torque (RAT) theory. We find the decrease of polarization degree P with emission intensity I, i.e., depolarization effect, of the form P∝ I−α ∼ 0.8–0.9, implying a significant loss of grain alignment in the filament's spine. The depolarization can be explained by the decrease in RAT alignment efficiency toward the denser regions with weaker radiation field, which cannot be explained by B-field tangling. We study the effect of the enhanced magnetic relaxation by embedded iron inclusions on RAT alignment and find that the high polarization fraction P ∼ 20%–30% in the outer layer of the filament is potential evidence for the magnetically enhanced RAT alignment mechanism. This is the first time this effect is evaluated in a filament. Based on the polarization fraction and RAT alignment theory, we also find evidence for grain growth in the filament

    How should health service organizations respond to diversity? A content analysis of six approaches

    Get PDF
    Background Health care organizations need to be responsive to the needs of increasingly diverse patient populations. We compared the contents of six publicly available approaches to organizational responsiveness to diversity. The central questions addressed in this paper are: what are the most consistently recommended issues for health care organizations to address in order to be responsive to the needs of diverse groups that differ from the majority population? How much consensus is there between various approaches? Methods We purposively sampled six approaches from the US, Australia and Europe and used qualitative textual analysis to categorize the content of each approach into domains (conceptually distinct topic areas) and, within each domain, into dimensions (operationalizations). The resulting classification framework was used for comparative analysis of the content of the six approaches. Results We identified seven domains that were represented in most or all approaches: organizational commitment, empirical evidence on inequalities and needs, a competent and diverse workforce, ensuring access for all users, ensuring responsiveness in care provision, fostering patient and community participation, and actively promoting responsiveness. Variations in the operationalization of these domains related to different scopes, contexts and types of diversity. For example, approaches that focus on ethnic diversity mostly provide recommendations to handle cultural and language differences; approaches that take an intersectional approach and broaden their target population to vulnerable groups in a more general sense also pay attention to factors such as socio-economic status and gender. Conclusions Despite differences in labeling, there is a broad consensus about what health care organizations need to do in order to be responsive to patient diversity. This opens the way to full scale implementation of organizational responsiveness in healthcare and structured evaluation of its effectiveness in improving patient outcomes

    Gamma radiation induces hydrogen absorption by copper in water

    Get PDF
    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.Peer reviewe

    A prospective cohort study of neighborhood stress and ischemic heart disease in Japan: a multilevel analysis using the JACC study data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A body of research has shown that neighborhood environment may have an effect on a variety of health outcomes, including cardiovascular disease. One explanation for the mechanism of the effect of neighborhood on cardiovascular disease is psychosocial pathways. Direct evidence for an effect of neighborhood on cardiovascular disease with adjustment for perceived stress at the individual level has not been obtained, however. The Japan Collaborative Cohort Study for the Evaluation of Cancer Risk provides a unique dataset which has aggregated area-based cohorts from 45 areas throughout Japan. The purpose of the present study was to examine the contextual effect of area-level stress on ischemic heart disease using data from a large prospective cohort in Japan.</p> <p>Methods</p> <p>A baseline survey of 110,792 residents of 45 areas aged 40-79 years was conducted between 1988 and 1990. Analysis was restricted to subjects from the 33 of 45 areas providing information about self-rated stress (32183 men and 45896 women). Multilevel Poisson regression models were employed in a two-level structure of individuals nested within the 33 areas. Area-level stress was calculated by sex as the number of persons who rated their stress level as high divided by the total number of subjects in that area. Mortality rate ratios (MRRs) per 1 percentage point increase in area-level stress were estimated with adjustment for compositional individual factors.</p> <p>Results</p> <p>During 15 years of follow-up (1,116,895 person-years), 936 deaths due to ischemic heart disease were recorded. Area-level stress varied from 6% to 22%. In the multivariable models, MRRs of area-level stress were 1.06 (95% confidence interval: 1.00-1.12, p = 0.043) in men and 1.07 (95% confidence interval: 1.00-1.14, p = 0.057) in women.</p> <p>Conclusions</p> <p>Area-level stress affects the likelihood of death due to ischemic heart disease of individuals in men. The present findings may suggest that stress should be considered not only within the individual but also within the neighborhood context.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Diversity of isoprene-degrading bacteria in phyllosphere and soil communities from a high isoprene-emitting environment: a Malaysian oil palm plantation

    Get PDF
    Background: Isoprene is the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, with annual global emissions almost equal to those of methane. Despite its importance in atmospheric chemistry and climate, little is known about the biological degradation of isoprene in the environment. The largest source of isoprene is terrestrial plants, and oil palms, the cultivation of which is expanding rapidly, are among the highest isoprene-producing trees. Results: DNA stable isotope probing (DNA-SIP) to study the microbial isoprene-degrading community associated with oil palm trees revealed novel genera of isoprene-utilising bacteria including Novosphingobium, Pelomonas, Rhodoblastus, Sphingomonas and Zoogloea in both oil palm soils and on leaves. Amplicon sequencing of isoA genes, which encode the α-subunit of the isoprene monooxygenase (IsoMO), a key enzyme in isoprene metabolism, confirmed that oil palm trees harbour a novel diversity of isoA sequences. In addition, metagenome assembled genomes (MAGs) were reconstructed from oil palm soil and leaf metagenomes and putative isoprene degradation genes were identified. Analysis of unenriched metagenomes showed that isoA-containing bacteria are more abundant in soils than in the oil palm phyllosphere. Conclusion: This study greatly expands the known diversity of bacteria that can metabolise isoprene and contributes to a better understanding of the biological degradation of this important but neglected climate-active gas

    Large-Scale Assessment of the Zebrafish Embryo as a Possible Predictive Model in Toxicity Testing

    Get PDF
    Background: In the drug discovery pipeline, safety pharmacology is a major issue. The zebrafish has been proposed as a model that can bridge the gap in this field between cell assays (which are cost-effective, but low in data content) and rodent assays (which are high in data content, but less cost-efficient). However, zebrafish assays are only likely to be useful if they can be shown to have high predictive power. We examined this issue by assaying 60 water-soluble compounds representing a range of chemical classes and toxicological mechanisms. Methodology/Principal Findings: Over 20,000 wild-type zebrafish embryos (including controls) were cultured individually in defined buffer in 96-well plates. Embryos were exposed for a 96 hour period starting at 24 hours post fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for LC 50 determination. Zebrafish embryo LC50 (log mmol/L), and published data on rodent LD50 (log mmol/kg), were found to be strongly correlated (using Kendall’s rank correlation tau and Pearson’s product-moment correlation). The slope of the regression line for the full set of compounds was 0.73403. However, we found that the slope was strongly influenced by compound class. Thus, while most compounds had a similar toxicity level in both species, some compounds were markedly more toxic in zebrafish than in rodents, or vice versa. Conclusions: For the substances examined here, in aggregate, the zebrafish embryo model has good predictivity for toxicit

    Two-Photon Imaging of Calcium in Virally Transfected Striate Cortical Neurons of Behaving Monkey

    Get PDF
    Two-photon scanning microscopy has advanced our understanding of neural signaling in non-mammalian species and mammals. Various developments are needed to perform two-photon scanning microscopy over prolonged periods in non-human primates performing a behavioral task. In striate cortex in two macaque monkeys, cortical neurons were transfected with a genetically encoded fluorescent calcium sensor, memTNXL, using AAV1 as a viral vector. By constructing an extremely rigid and stable apparatus holding both the two-photon scanning microscope and the monkey's head, single neurons were imaged at high magnification for prolonged periods with minimal motion artifacts for up to ten months. Structural images of single neurons were obtained at high magnification. Changes in calcium during visual stimulation were measured as the monkeys performed a fixation task. Overall, functional responses and orientation tuning curves were obtained in 18.8% of the 234 labeled and imaged neurons. This demonstrated that the two-photon scanning microscopy can be successfully obtained in behaving primates
    corecore