58 research outputs found

    Evaluation of SOVAT: An OLAP-GIS decision support system for community health assessment data analysis

    Get PDF
    Background. Data analysis in community health assessment (CHA) involves the collection, integration, and analysis of large numerical and spatial data sets in order to identify health priorities. Geographic Information Systems (GIS) enable for management and analysis using spatial data, but have limitations in performing analysis of numerical data because of its traditional database architecture. On-Line Analytical Processing (OLAP) is a multidimensional datawarehouse designed to facilitate querying of large numerical data. Coupling the spatial capabilities of GIS with the numerical analysis of OLAP, might enhance CHA data analysis. OLAP-GIS systems have been developed by university researchers and corporations, yet their potential for CHA data analysis is not well understood. To evaluate the potential of an OLAP-GIS decision support system for CHA problem solving, we compared OLAP-GIS to the standard information technology (IT) currently used by many public health professionals. Methods. SOVAT, an OLAP-GIS decision support system developed at the University of Pittsburgh, was compared against current IT for data analysis for CHA. For this study, current IT was considered the combined use of SPSS and GIS ("SPSS-GIS"). Graduate students, researchers, and faculty in the health sciences at the University of Pittsburgh were recruited. Each round consisted of: an instructional video of the system being evaluated, two practice tasks, five assessment tasks, and one post-study questionnaire. Objective and subjective measurement included: task completion time, success in answering the tasks, and system satisfaction. Results. Thirteen individuals participated. Inferential statistics were analyzed using linear mixed model analysis. SOVAT was statistically significant (α = .01) from SPSS-GIS for satisfaction and time (p < .002). Descriptive results indicated that participants had greater success in answering the tasks when using SOVAT as compared to SPSS-GIS. Conclusion. Using SOVAT, tasks were completed more efficiently, with a higher rate of success, and with greater satisfaction, than the combined use of SPSS and GIS. The results from this study indicate a potential for OLAP-GIS decision support systems as a valuable tool for CHA data analysis. © 2008 Scotch et al; licensee BioMed Central Ltd

    Identification of Novel Susceptibility Loci and Genes for Prostate Cancer Risk: A Transcriptome-Wide Association Study in over 140,000 European Descendants

    Get PDF
    Genome-wide association study–identified prostate cancer risk variants explain only a relatively small fraction of its familial relative risk, and the genes responsible for many of these identified associations remain unknown. To discover novel prostate cancer genetic loci and possible causal genes at previously identified risk loci, we performed a transcriptome-wide association study in 79,194 cases and 61,112 controls of European ancestry. Using data from the Genotype-Tissue Expression Project, we established genetic models to predict gene expression across the transcriptome for both prostate models and cross-tissue models and evaluated model performance using two independent datasets. We identified significant associations for 137 genes at P < 2.61 × 10−6, a Bonferroni-corrected threshold, including nine genes that remained significant at P < 2.61 × 10−6 after adjusting for all known prostate cancer risk variants in nearby regions. Of the 128 remaining associated genes, 94 have not yet been reported as potential target genes at known loci. We silenced 14 genes and many showed a consistent effect on viability and colony-forming efficiency in three cell lines. Our study provides substantial new information to advance our understanding of prostate cancer genetics and biology. SIGNIFICANCE: This study identifies novel prostate cancer genetic loci and possible causal genes, advancing our understanding of the molecular mechanisms that drive prostate cancer

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men &lt;= 50y, men &gt; 50y, women &lt;= 50y, women &gt; 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR&lt; 5%) age-specific effects, of which 11 had larger effects in younger (&lt; 50y) than in older adults (&gt;= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.</p

    Mining the human phenome using allelic scores that index biological intermediates

    Get PDF
    J. Kaprio ja M-L. Lokki työryhmien jäseniä.It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.Peer reviewe

    Novel Approach Identifies SNPs in SLC2A10 and KCNK9 with Evidence for Parent-of-Origin Effect on Body Mass Index

    Get PDF
    Marja-Liisa Lokki työryhmien Generation Scotland Consortium, LifeLines Cohort Study ja GIANT Consortium jäsenPeer reviewe
    corecore