294 research outputs found

    Renormalization and blow up for charge one equivariant critical wave maps

    Full text link
    We prove the existence of equivariant finite time blow up solutions for the wave map problem from 2+1 dimensions into the 2-sphere. These solutions are the sum of a dynamically rescaled ground-state harmonic map plus a radiation term. The local energy of the latter tends to zero as time approaches blow up time. This is accomplished by first "renormalizing" the rescaled ground state harmonic map profile by solving an elliptic equation, followed by a perturbative analysis

    Irreducible Hamiltonian BRST-anti-BRST symmetry for reducible systems

    Full text link
    An irreducible Hamiltonian BRST-anti-BRST treatment of reducible first-class systems based on homological arguments is proposed. The general formalism is exemplified on the Freedman-Townsend model.Comment: LaTeX 2.09, 35 page

    The relativistic Euler equations with a physical vacuum boundary: Hadamard local well-posedness, rough solutions, and continuation criterion

    Full text link
    In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and continuous dependence on the data; (ii) low regularity solutions: our uniqueness result holds at the level of Lipschitz velocity and density, while our rough solutions, obtained as unique limits of smooth solutions, have regularity only a half derivative above scaling; (iii) stability: our uniqueness in fact follows from a more general result, namely, we show that a certain nonlinear functional that tracks the distance between two solutions (in part by measuring the distance between their respective boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale invariant energy estimates for solutions; (v) a sharp continuation criterion, at the level of scaling, showing that solutions can be continued as long as the the velocity is in Lt1LipL^1_t Lip and a suitable weighted version of the density is at the same regularity level. Our entire approach is in Eulerian coordinates and relies on the functional framework developed in the companion work of the second and third authors corresponding to the non relativistic problem. All our results are valid for a general equation of state p(ϱ)=ϱγp(\varrho)= \varrho^\gamma, γ>1\gamma > 1

    Strichartz estimates on Schwarzschild black hole backgrounds

    Get PDF
    We study dispersive properties for the wave equation in the Schwarzschild space-time. The first result we obtain is a local energy estimate. This is then used, following the spirit of earlier work of Metcalfe-Tataru, in order to establish global-in-time Strichartz estimates. A considerable part of the paper is devoted to a precise analysis of solutions near the trapping region, namely the photon sphere.Comment: 44 pages; typos fixed, minor modifications in several place

    Koszul-Tate Cohomology For an Sp(2)-Covariant Quantization of Gauge Theories with Linearly Dependent Generators

    Get PDF
    The anti-BRST transformation, in its Sp(2)-symmetric version, for the general case of any stage-reducible gauge theories is implemented in the usual BV approach. This task is accomplished not by duplicating the gauge symmetries but rather by duplicating all fields and antifields of the theory and by imposing the acyclicity of the Koszul-Tate differential. In this way the Sp(2)-covariant quantization can be realised in the standard BV approach and its equivalence with BLT quantization can be proven by a special gauge fixing procedure.Comment: 13 pages, Latex, To Be Published in International Journal of Modern Physics

    Concerning the Wave equation on Asymptotically Euclidean Manifolds

    Full text link
    We obtain KSS, Strichartz and certain weighted Strichartz estimate for the wave equation on (Rd,g)(\R^d, \mathfrak{g}), d3d \geq 3, when metric g\mathfrak{g} is non-trapping and approaches the Euclidean metric like xρ x ^{- \rho} with ρ>0\rho>0. Using the KSS estimate, we prove almost global existence for quadratically semilinear wave equations with small initial data for ρ>1\rho> 1 and d=3d=3. Also, we establish the Strauss conjecture when the metric is radial with ρ>0\rho>0 for d=3d= 3.Comment: Final version. To appear in Journal d'Analyse Mathematiqu

    On the 2d Zakharov system with L^2 Schr\"odinger data

    Full text link
    We prove local in time well-posedness for the Zakharov system in two space dimensions with large initial data in L^2 x H^{-1/2} x H^{-3/2}. This is the space of optimal regularity in the sense that the data-to-solution map fails to be smooth at the origin for any rougher pair of spaces in the L^2-based Sobolev scale. Moreover, it is a natural space for the Cauchy problem in view of the subsonic limit equation, namely the focusing cubic nonlinear Schroedinger equation. The existence time we obtain depends only upon the corresponding norms of the initial data - a result which is false for the cubic nonlinear Schroedinger equation in dimension two - and it is optimal because Glangetas-Merle's solutions blow up at that time.Comment: 30 pages, 2 figures. Minor revision. Title has been change

    Conormal distributions in the Shubin calculus of pseudodifferential operators

    Get PDF
    We characterize the Schwartz kernels of pseudodifferential operators of Shubin type by means of an FBI transform. Based on this we introduce as a generalization a new class of tempered distributions called Shubin conormal distributions. We study their transformation behavior, normal forms and microlocal properties.Comment: 23 page

    Energy dispersed large data wave maps in 2+1 dimensions

    Get PDF
    In this article we consider large data Wave-Maps from R2+1\mathbb{R}^{2+1} into a compact Riemannian manifold (M,g)(\mathcal{M},g), and we prove that regularity and dispersive bounds persist as long as a certain type of bulk (non-dispersive) concentration is absent. In a companion article we use these results in order to establish a full regularity theory for large data Wave-Maps.Comment: 89 page
    corecore