13,190 research outputs found

    Microhabitat preferences of Biomphalaria pfeifferi and Lymnaea natalensis in a natural and a man-made habitat in southeastern Tanzania.

    Get PDF
    Schistosoma mansoni is an important human parasitic disease which is widespread throughout Africa. As Biomphalaria pfeifferi snails act as intermediate host, knowledge of their population ecology is an essential prerequisite towards understanding disease transmission. We conducted a field study and assessed the density and microhabitat preferences of B.pfeifferi in a natural habitat which was a residual pool of a river. Repeated removal collecting revealed a density of 26.6 [95% confidence interval (CI): 24.9-28.3] snails/m2. B. pfeifferi showed microhabitat preferences for shallow water (depths: 0-4cm). They were found most abundantly close to the shoreline (distances: 0-40cm), and preferred either plant detritus or bedrock as substratum. Lymnaea natalensis, a snail which may act as a host for human Fasciola gigantica, also occurred in this habitat with a density of 34.0 (95% CI: 24.7-43.3) snails/m2, and preferred significantly different microhabitats when compared to B.pfeifferi. Microhabitat selection by these snail species was also investigated in a man-made habitat nearby, which consisted of a flat layer of concrete fixed on the riverbed, covered by algae. Here, B.pfeifferi showed no preference for locations close to the shoreline, probably because the habitat had a uniform depth. We conclude that repeated removal collecting in shallow habitats provides reliable estimates of snail densities and that habitat changes through constructions may create favourable microhabitats and contribute to additional disease transmission

    Review of antiskid and brake dynamics research

    Get PDF
    The behavior of various antiskid systems was investigated under controlled conditions. Results from utilizing a single main wheel of a DC-9 aircraft suggest that the systems investigated perform well under most circumstances but there may be room for improvement. For example, it was demonstrated that pressure bias modulation can adversely affect the response of antiskid systems to rapid changes in the runway friction level. Results also indicate that antiskid systems designed to operate at a slip ratio of approximately 0.1 can provide a maximum braking effort without undue loss in the cornering capability of the tire. Time histories of braking friction coefficient were shown to provide a means of determining antiskid system performance and for systems that employed pressure bias modulation it was shown that performance could also be estimated from time histories of brake pressure and torque

    Status of recent aircraft braking and cornering research

    Get PDF
    The sources of degraded performance which sometimes occurs under adverse runway conditions, are investigated to obtain data necessary to the development of more advanced systems, in an effort to insure safe ground handling operations under all-weather conditions. Tire-to-ground friction characteristics are determined under braking conditions which closely resemble those of airplanes under heavy braking. Braking data from single-wheel landing loads track tests are related with those available from full-scale flight tests

    Behavior of aircraft antiskid breaking systems on dry and wet runway surfaces: A slip-ratio-controlled system with ground speed reference from unbraked nose wheel

    Get PDF
    An experimental investigation was conducted at the Langley aircraft landing loads and traction facility to study the braking and cornering response of a slip ratio controlled aircraft antiskid braking system with ground speed reference derived from an unbraked nose wheel. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a DC-9 series 10 airplane. During maximum braking, the average ratio of the drag force friction coefficient developed by the antiskid system to the maximum drag force friction coefficient available was higher on the dry surface than on damp and flooded surfaces, and was reduced with lighter vertical loads, higher yaw angles, and when new tire treads were replaced by worn treads. Similarly, the average ratio of side force friction coefficient developed by the tire under antiskid control to the maximum side force friction coefficient available to a freely rolling yawed tire decreased with increasing yaw angle, generally increased with ground speed, and decreased when tires with new treads were replaced by those with worn treads

    Technique for measuring side forces on a banked aircraft with a free-swiveling nose gear

    Get PDF
    An experimental investigation was conducted at the Langley Research Center to determine a method for towing an aircraft to measure the side forces of a free-swiveling nose gear due to variations in bank angle. A F-106 aircraft and the Space Shuttle orbiter OV-101 were towed to measure side forces on full-size aircraft for bank angles up to 3 deg. These tests indicate that substantial side forces will occur if an aircraft is rolling on a runway in a banked attitude even when the nose gear is free to swivel. Corotation of a twin-tire nose gear appears to cause a substantial increase in side force due to bank angle compared with a nose gear with indepdendently rotating wheels

    Static and yawed-rolling mechanical properties of two type 7 aircraft tires

    Get PDF
    Selected mechanical properties of 18 x 5.5 and 49 x 17 size, type 7 aircraft tires were evaluated. The tires were subjected to pure vertical loads and to combined vertical and lateral loads under both static and rolling conditions. Parameters for the static tests consisted of tire load in the vertical and lateral directions, and parameters for the rolling tests included tire vertical load, yaw angle, and ground speed. Effects of each of these parameters on the measured tire characteristics are discussed and, where possible, compared with previous work. Results indicate that dynamic tire properties under investigation were generally insensitive to speed variations and therefore tend to support the conclusion that many tire dynamic characteristics can be obtained from static and low speed rolling tests. Furthermore, many of the tire mechanical properties are in good agreement with empirical predictions based on earlier research

    Coronal Seismology and the Propagation of Acoustic Waves Along Coronal Loops

    Full text link
    We use a combination of analytical theory, numerical simulation, and data analysis to study the propagation of acoustic waves along coronal loops. We show that the intensity perturbation of a wave depends on a number of factors, including dissipation of the wave energy, pressure and temperature gradients in the loop atmosphere, work action between the wave and a flow, and the sensitivity properties of the observing instrument. In particular, the scale length of the intensity perturbation varies directly with the dissipation scale length (i.e., damping length) and the scale lengths of pressure, temperature, and velocity. We simulate wave propagation in three different equilibrium loop models and find that dissipation and pressure and temperature stratification are the most important effects in the low corona where the waves are most easily detected. Velocity effects are small, and cross-sectional area variations play no direct role for lines-of-sight that are normal to the loop axis. The intensity perturbation scale lengths in our simulations agree very well with the scale lengths we measure in a sample of loops observed by TRACE. The median observed value is 4.35x10^9 cm. In some cases the intensity perturbation increases with height, which is likely an indication of a temperature inversion in the loop (i.e., temperature that decreases with height). Our most important conclusion is that thermal conduction, the primary damping mechanism, is accurately described by classical transport theory. There is no need to invoke anomalous processes to explain the observations.Comment: To appear in the Dec. 1, 2004 issue of the Astrophysical Journa

    Decomposition of coarse woody debris in a long-term litter manipulation experiment: A focus on nutrient availability

    Get PDF
    The majority of above-ground carbon in tropical forests is stored in wood, which is returned to the atmosphere during decomposition of coarse woody debris. However, the factors controlling wood decomposition have not been experimentally manipulated over time scales comparable to the length of this process.We hypothesized that wood decomposition is limited by nutrient availability and tested this hypothesis in a long-term litter addition and removal experiment in a lowland tropical forest in Panama. Specifically, we quantified decomposition using a 15-year chronosequence of decaying boles, and measured respiration rates and nutrient limitation of wood decomposer communities.The long-term probability that a dead tree completely decomposed was decreased in plots where litter was removed, but did not differ between litter addition and control treatments. Similarly, respiration rates of wood decomposer communities were greater in control treatments relative to litter removal plots; litter addition treatments did not differ from either of the other treatments. Respiration rates increased in response to nutrient addition (nitrogen, phosphorus, and potassium) in the litter removal and addition treatments, but not in the controls.Established decreases in concentrations of soil nutrients in litter removal plots and increased respiration rates in response to nutrient addition suggest that reduced rates of wood decomposition after litter removal were caused by decreased nutrient availability. The effects of litter manipulations differed directionally from a previous short-term decomposition study in the same plots, and reduced rates of bole decomposition in litter removal plots did not emerge until after more than 6 years of decomposition. These differences suggest that litter-mediated effects on nutrient dynamics have complex interactions with decomposition over time

    Behavior of aircraft antiskid braking systems on dry and wet runway surfaces. A slip-velocity-controlled, pressure-bias-modulated system

    Get PDF
    The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined
    corecore