4,410 research outputs found
Online monitoring system and data management for KamLAND
In January 22, 2002, KamLAND started the data-taking. The KamLAND detector is
a complicated system which consists of liquid scintillator, buffer oil,
spherical balloon and so on. In order to maintain the detector safety, we
constructed monitoring system which collect detector status information such as
balloon weight, liquid scintillator oil level and so on. In addition, we
constructed continuous Rn monitoring system for the Be solar neutrino
detection. The KamLAND monitoring system consists of various network, LON,
1-Wire, and TCP/IP, and these are indispensable for continuous experimental
data acquisition.Comment: Submitted to Nucl.Instrum.Meth.
Superconductivity induced by longitudinal ferromagnetic fluctuations in UCoGe
From detailed angle-resolved NMR and Meissner measurements on a ferromagnetic
(FM) superconductor UCoGe (T_Curie ~ 2.5 K and T_SC ~ 0.6 K), we show that
superconductivity in UCoGe is tightly coupled with longitudinal FM spin
fluctuations along the c axis. We found that magnetic fields along the c axis
(H || c) strongly suppress the FM fluctuations and that the superconductivity
is observed in the limited magnetic field region where the longitudinal FM spin
fluctuations are active. These results combined with model calculations
strongly suggest that the longitudinal FM spin fluctuations tuned by H || c
induce the unique spin-triplet superconductivity in UCoGe. This is the first
clear example that FM fluctuations are intimately related with
superconductivity.Comment: 4 pages, 5 figures, to appear in PR
Solar cell radiation handbook
The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented
Spin fluctuations and superconductivity in noncentrosymmetric heavy fermion systems CeRhSi and CeIrSi
We study the normal and the superconducting properties in noncentrosymmetric
heavy fermion superconductors CeRhSi and CeIrSi. For the normal state,
we show that experimentally observed linear temperature dependence of the
resistivity is understood through the antiferromagnetic spin fluctuations near
the quantum critical point (QCP) in three dimensions. For the superconducting
state, we derive a general formula to calculate the upper critical field
, with which we can treat the Pauli and the orbital depairing effect on
an equal footing. The strong coupling effect for general electronic structures
is also taken into account. We show that the experimentally observed features
in , the huge value up to 30(T), the downward
curvatures, and the strong pressure dependence, are naturally understood as an
interplay of the Rashba spin-orbit interaction due to the lack of inversion
symmetry and the spin fluctuations near the QCP. The large anisotropy between
and is explained in terms of
the spin-orbit interaction. Furthermore, a possible realization of the
Fulde-Ferrell- Larkin-Ovchinnikov state for is studied. We
also examine effects of spin-flip scattering processes in the pairing
interaction and those of the applied magnetic field on the spin fluctuations.
We find that the above mentioned results are robust against these effects. The
consistency of our results strongly supports the scenario that the
superconductivity in CeRhSi and CeIrSi is mediated by the spin
fluctuations near the QCP.Comment: 21pages, 13figures, to be published in Phys. Rev.
- …