2 research outputs found
Cyclic and Long-term Variation of Sunspot Magnetic Fields
Measurements from the Mount Wilson Observatory (MWO) are used to study the
long-term variations of sunspot field strengths from 1920 to 1958. Following a
modified approach similar to that in Pevtsov et al. (2011), for each observing
week we select a single sunspot with the strongest field strength measured that
week and then compute monthly averages of these weekly maximum field strengths.
The data show the solar cycle variation of the peak field strengths with an
amplitude of about 500-700 gauss (G), but no statistically significant
long-term trends. Next, we use the sunspot observations from the Royal
Greenwich Observatory (RGO) to establish a relationship between the sunspot
areas and the sunspot field strengths for Cycles 15-19. This relationship is
then used to create a proxy of peak magnetic field strength based on sunspot
areas from the RGO and the USAF/NOAA network for the period from 1874 to early
2012. Over this interval, the magnetic field proxy shows a clear solar cycle
variation with an amplitude of 500-700 G and a weaker long-term trend. From
1874 to around 1920, the mean value of magnetic field proxy increases by about
300-350 G, and, following a broad maximum in 1920-1960, it decreases by about
300 G. Using the proxy for the magnetic field strength as the reference, we
scale the MWO field measurements to the measurements of the magnetic fields in
Pevtsov et al. (2011) to construct a combined data set of maximum sunspot field
strengths extending from 1920 to early 2012. This combined data set shows
strong solar cycle variations and no significant long-term trend (linear fit to
the data yields a slope of 0.8 G year). On the other hand, the
peak sunspot field strengths observed at the minimum of the solar cycle show a
gradual decline over the last three minima (corresponding to cycles 21-23) with
a mean downward trend of 15 G year
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic