11 research outputs found
A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation
The use of nanotechnology and nanomaterials in medical research is growing. Silver-containing nanoparticles have previously demonstrated antimicrobial efficacy against bacteria and viral particles. This preliminary study utilized an in vitro approach to evaluate the ability of silver-based nanoparticles to inhibit infectivity of the biological select agent, monkeypox virus (MPV). Nanoparticles (10–80 nm, with or without polysaccharide coating), or silver nitrate (AgNO3) at concentrations of 100, 50, 25, and 12.5 μg/mL were evaluated for efficacy using a plaque reduction assay. Both Ag-PS-25 (polysaccharide-coated, 25 nm) and Ag-NP-55 (non-coated, 55 nm) exhibited a significant (P ≤ 0.05) dose-dependent effect of test compound concentration on the mean number of plaque-forming units (PFU). All concentrations of silver nitrate (except 100 μg/mL) and Ag-PS-10 promoted significant (P ≤ 0.05) decreases in the number of observed PFU compared to untreated controls. Some nanoparticle treatments led to increased MPV PFU ranging from 1.04- to 1.8-fold above controls. No cytotoxicity (Vero cell monolayer sloughing) was caused by any test compound, except 100 μg/mL AgNO3. These results demonstrate that silver-based nanoparticles of approximately 10 nm inhibit MPV infection in vitro, supporting their potential use as an anti-viral therapeutic
The out of Africa model of varicella-zoster virus evolution: Single nucleotide polymorphisms and private alleles distinguish Asian clades from European/North American clades
10.1016/S0264-410X(02)00559-5Vaccine2111-121072-1081VACC
Feasibility and safety of intranasally administered mesenchymal stromal cells after perinatal arterial ischaemic stroke in the Netherlands (PASSIoN): a first-in-human, open-label intervention study
Background: Perinatal arterial ischaemic stroke (PAIS) is an important cause of neurodevelopmental disabilities. In this first-in-human study, we aimed to assess the feasibility and safety of intranasally delivered bone marrow-derived allogeneic mesenchymal stromal cells (MSCs) to treat PAIS in neonates. Methods: In this open-label intervention study in collaboration with all neonatal intensive care units in the Netherlands, we included neonates born at full term (>= 36 weeks of gestation) with MRI-confirmed PAIS in the middle cerebral artery region. All eligible patients were transferred to the neonatal intensive care unit of the Wilhelmina Children's Hospital. Neonates received one dose of 45-50 x 10(6) bone-marrow derived MSCs intranasally within 7 days of presenting signs of PAIS. The primary endpoints were acute and subacute safety outcomes, including vital signs, blood markers, and the occurrence of toxicity, adverse events, and serious adverse events. The occurrence of unexpected cerebral abnormalities by a repeat MRI at 3 months of age was a secondary endpoint. As part of standard clinical follow-up at Wilhelmina Children's Hospital, we assessed corticospinal tract development on MRI and performed motor assessments at 4 months of age. This study is registered with ClinicalTrials.gov, NCT03356821. Findings: Between Feb 11, 2020, and April 29, 2021, ten neonates were enrolled in the study. Intranasal administration of MSCs was well tolerated in all ten neonates. No serious adverse events were observed. One adverse event was seen: a mild transient fever of 38 degrees C without the need for clinical intervention. Blood inflammation markers (C-reactive protein, procalcitonin, and leukocyte count) were not significantly different pre-administration versus postadministration and, although thrombocyte levels increased (p=0.011), all were within the physiological range. Followup MRI scans did not show unexpected structural cerebral abnormalities. All ten patients had initial pre-Wallerian changes in the corticospinal tracts, but only four (40%) patients showed asymmetrical corticospinal tracts at follow-up MRI. Abnormal early motor assessment was found in three (30%) infants. Interpretation: This first-in-human study demonstrates that intranasal bone marrow-derived MSC administration in neonates after PAIS is feasible and no serious adverse events were observed in patients followed up until 3 months of age. Future large-scale placebo-controlled studies are needed to determine the therapeutic effect of intranasal MSCs for PAIS. Copyright (C) 2022 Published by Elsevier Ltd. All rights reserved.</p