11 research outputs found

    Overview of the JET results in support to ITER

    Get PDF

    Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios

    No full text
    Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4 MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n H/n e but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I p = 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4 MA), tungsten accumulation can be only avoided with 5 MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW,very low tungsten concentration in the core (∼10-5) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient

    Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    No full text
    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium–tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle–energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons

    Thermal analysis of protruding surfaces in the JET divertor

    No full text

    3D simulations of gas puff effects on edge plasma and ICRF coupling in JET

    No full text
    Recent JET (ITER-Like Wall) experiments have shown that the fueling gas puffed from different locations of the vessel can result in different scrape-off layer (SOL) density profiles and therefore different radio frequency (RF) coupling. To reproduce the experimental observations, to understand the associated physics and to optimize the gas puff methods, we have carried out three-dimensional (3D) simulations with the EMC3-EIRENE code in JET-ILW including a realistic description of the vessel geometry and the gas injection modules (GIMs) configuration. Various gas puffing methods have been investigated, in which the location of gas fueling is the only variable parameter. The simulation results are in quantitative agreement with the experimental measurements. They confirm that compared to divertor gas fueling, mid-plane gas puffing increases the SOL density most significantly but locally, while top gas puffing increases it uniformly in toroidal direction but to a lower degree. Moreover, the present analysis corroborates the experimental findings that combined gas puff scenarios - based on distributed main chamber gas puffing - can be effective in increasing the RF coupling for multiple antennas simultaneously. The results indicate that the spreading of the gas, the local ionization and the transport of the ionized gas along the magnetic field lines connecting the local gas cloud in front of the GIMs to the antennas are responsible for the enhanced SOL density and thus the larger RF coupling

    Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model

    Get PDF
    The RAPTOR code is a control-oriented core plasma profile simulator with various applications in control design and verification, discharge optimization and real-time plasma simulation. To date, RAPTOR was capable of simulating the evolution of poloidal flux and electron temperature using empirical transport models, and required the user to input assumptions on the other profiles and plasma parameters. We present an extension of the code to simulate the temperature evolution of both ions and electrons, as well as the particle density transport. A proof-of-principle neural-network emulation of the quasilinear gyrokinetic QuaLiKiz transport model is coupled to RAPTOR for the calculation of first-principle-based heat and particle turbulent transport. These extended capabilities are demonstrated in a simulation of a JET discharge. The multi-channel simulation requires ∼0.2 s to simulate 1 second of a JET plasma, corresponding to ∼20 energy confinement times, while predicting experimental profiles within the limits of the transport model. The transport model requires no external inputs except for the boundary condition at the top of the H-mode pedestal. This marks the first time that simultaneous, accurate predictions of Te, Tiand nehave been obtained using a first-principle-based transport code that can run in faster-than-real-time for present-day tokamaks

    Runaway electron beam control

    Get PDF
    Post-disruption runaway electron (RE) beams in tokamaks with large current can cause deep melting of the vessel and are one of the major concerns for ITER operations. Consequently, a considerable effort is provided by the scientific community in order to test RE mitigation strategies. We present an overview of the results obtained at FTU and TCV controlling the current and position of RE beams to improve safety and repeatability of mitigation studies such as massive gas (MGI) and shattered pellet injections (SPI). We show that the proposed RE beam controller (REB-C) implemented at FTU and TCV is effective and that current reduction of the beam can be performed via the central solenoid reducing the energy of REs, providing an alternative/parallel mitigation strategy to MGI/SPI. Experimental results show that, meanwhile deuterium pellets injected on a fully formed RE beam are ablated but do not improve RE energy dissipation rate, heavy metals injected by a laser blow off system on low-density flat-top discharges with a high level of RE seeding seem to induce disruptions expelling REs. Instabilities during the RE beam plateau phase have shown to enhance losses of REs, expelled from the beam core. Then, with the aim of triggering instabilities to increase RE losses, an oscillating loop voltage has been tested on RE beam plateau phase at TCV revealing, for the first time, what seems to be a full conversion from runaway to ohmic current. We finally report progresses in the design of control strategies at JET in view of the incoming SPI mitigation experiments

    Comparison of runaway electron generation parameters in small, medium-sized and large tokamaks - A survey of experiments in COMPASS, TCV, ASDEX-Upgrade and JET

    No full text
    This paper presents a survey of the experiments on runaway electrons (RE) carried out recently in frames of EUROFusion Consortium in different tokamaks: COMPASS, ASDEX-Upgrade, TCV and JET. Massive gas injection (MGI) has been used in different scenarios for RE generation in small and medium-sized tokamaks to elaborate the most efficient and reliable ones for future RE experiments. New data on RE generated at disruptions in COMPASS and ASDEX-Upgrade was collected and added to the JET database. Different accessible parameters of disruptions, such as current quench rate, conversion rate of plasma current into runaways, etc have been analysed for each tokamak and compared to JET data. It was shown, that tokamaks with larger geometrical sizes provide the wider limits for spatial and temporal variation of plasma parameters during disruptions, thus extending the parameter space for RE generation. The second part of experiments was dedicated to study of RE generation in stationary discharges in COMPASS, TCV and JET. Injection of Ne/Ar have been used to mock-up the JET MGI runaway suppression experiments. Secondary RE avalanching was identified and quantified for the first time in the TCV tokamak in RE generating discharges after massive Ne injection. Simulations of the primary RE generation and secondary avalanching dynamics in stationary discharges has demonstrated that RE current fraction created via avalanching could achieve up to 70-75% of the total plasma current in TCV. Relaxations which are reminiscent the phenomena associated to the kinetic instability driven by RE have been detected in RE discharges in TCV. Macroscopic parameters of RE dominating discharges in TCV before and after onset of the instability fit well to the empirical instability criterion, which was established in the early tokamaks and examined by results of recent numerical simulations

    Overview of the JET preparation for deuterium–tritium operation with the ITER like-wall

    No full text
    corecore