6 research outputs found
Growth, microstructure, and failure of crazes in glassy polymers
We report on an extensive study of craze formation in glassy polymers.
Molecular dynamics simulations of a coarse-grained bead-spring model were
employed to investigate the molecular level processes during craze nucleation,
widening, and breakdown for a wide range of temperature, polymer chain length
, entanglement length and strength of adhesive interactions between
polymer chains. Craze widening proceeds via a fibril-drawing process at
constant drawing stress. The extension ratio is determined by the entanglement
length, and the characteristic length of stretched chain segments in the
polymer craze is . In the craze, tension is mostly carried by the
covalent backbone bonds, and the force distribution develops an exponential
tail at large tensile forces. The failure mode of crazes changes from
disentanglement to scission for , and breakdown through scission
is governed by large stress fluctuations. The simulations also reveal
inconsistencies with previous theoretical models of craze widening that were
based on continuum level hydrodynamics
Wettability Switching Techniques on Superhydrophobic Surfaces
The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces
Dissipative Forces in the Electrowetted Cassie-Wenzel Transition on Hydrophobic Rough Surfaces
Dissipative forces in the electrowetting-induced Cassie-Wenzel transition on hydrophobic rough surfaces are explored. High-speed imaging of droplet shape evolution during the elec- trically induced spreading process allows for the location of the contact line to be tracked as a function of time. A surface energy analysis quantifies the total energy dissipated via nonconservative forces during the spreading process. Though identified as the dominant dissipative effect in droplet spreading on smooth surfaces, contact line friction is shown to have a relatively weak influence on the spreading on rough surfaces. Supplemental files are available for this article. Go to the publisher’s online edition of Nanoscale and Microscale Thermophysical Engineering to view the free supplemental file
Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching
10.1007/s00339-010-5807-9Applied Physics A: Materials Science and Processing1012237-241APAM