35 research outputs found
Human Resource Flexibility as a Mediating Variable Between High Performance Work Systems and Performance
Much of the human resource management literature has demonstrated the impact of high performance
work systems (HPWS) on organizational performance. A new generation of studies is
emerging in this literature that recommends the inclusion of mediating variables between HPWS
and organizational performance. The increasing rate of dynamism in competitive environments
suggests that measures of employee adaptability should be included as a mechanism that may
explain the relevance of HPWS to firm competitiveness. On a sample of 226 Spanish firms, the
study’s results confirm that HPWS influences performance through its impact on the firm’s
human resource (HR) flexibility
The Breakup Cross Section of the D+D Reaction at 6.94 MeV
The D+D reactions are well known and widely used for a variety of purposes, mainly because of the use of the D(d, n)3He reaction as a mono-energetic neutron source. The least studied of the D+D reactions is the D(d, n)pD reaction known as the deuteron breakup reaction, which produces a continuum of neutrons at energies below the monoenergetic peak. The neutron energy distribution as a function of angle for the cross section, , of the D(d,n)pD reaction has been measured using a 6.94-MeV pulsed deuteron beam incident upon a D2 gas target. The time-of-flight technique was used to determine the energy of the neutrons detected in an array of two lithium glass scintillators and one NE-213 scintillator. The breakup cross section was determined as low as 225-keV neutron energy in the lithium glass detectors
The Breakup Cross Section of the D+D Reaction at 6.94 MeV
The D+D reactions are well known and widely used for a variety of purposes, mainly because of the use of the D(d, n)3He reaction as a mono-energetic neutron source. The least studied of the D+D reactions is the D(d, n)pD reaction known as the deuteron breakup reaction, which produces a continuum of neutrons at energies below the monoenergetic peak. The neutron energy distribution as a function of angle for the cross section, d2σdΩdE, of the D(d,n)pD reaction has been measured using a 6.94-MeV pulsed deuteron beam incident upon a D2 gas target. The time-of-flight technique was used to determine the energy of the neutrons detected in an array of two lithium glass scintillators and one NE-213 scintillator. The breakup cross section was determined as low as 225-keV neutron energy in the lithium glass detectors