32 research outputs found
Preparation and keeping quality of hot smoked mackerel
A method has been standardised for the production of smoke cured mackerel by dry salting in the ratio of 1:8 salt to fish followed by smoking in a traditional smoke chamber at 70±5°C for 5h. The smoke was generated by burning moist coconut husk and saw dust. The product obtained by this method had shelf-lives of 105, 95 and 6 days in chilled storage (0 to 2°C) refrigerated storage (10±2°C) and at room temperature (29±2°C) respectively
High temperature processing of fish sausage 3. - Studies on some of the storage characteristics
The proximate composition of the high temperature processed fish sausage was found to be 14.56% protein, 4.65% fat, 69.14% moisture, 2.12% ash and 8.12% carbohydrate. The quality of the product during storage was assessed on the basis of the changes observed in the physical, chemical and microbiological parameters. The results of the different tests such as pH, volatile base nitrogen (VBN), trimethyl amine nitrogen (TMA-N) and jelly strength are summarized and discussed. The total bacterial load increased gradually during storage but was not proportional to the initial load
High temperature processing of fish sausage 2. - Effect of certain preservatives on the shelf life
The effects of preservatives like fat coated sorbic acid (FCSA) and glucono-deltalactone (D-lactone), both separately and in combination, on the shelf life of high temperature (115.6°C for 20 min) processed fish sausage, stored at three different temperatures namely, ambient (28±2° C), cooler storage (2±2°C) and refrigerator (10±2° C) were studied. Whereas the control (without preservative), FCSA, D-lactone and FCSA + D-lactone treated samples could be stored for 9, 11 and 13 days respectively at ambient temperature, those stored at lower temperatures were found to be in acceptable condition for 70 and 80 days respectively. Organoleptic evaluation of taste, flavour the products carried out by panelists revealed that FCSA and FCSA + D-lactone treated samples were unacceptable with regard to the taste, flavour and texture. However, the taste flavour and texture of the control and D-lactone treated samples were in acceptable condition
High temperature processing of fish sausage 1. - An improved technique
An improved technique for the preparation of fish sausage (Nemipterus japonicus) over the conventional method (90°degree C for 1 h) has been evolved by processing at a temperature of 115.6°degree C (4.5 kg) for 20 min. The overall quality characteristics of fish sausage, particularly its colour, texture and appearance remained unchanged and the product was in good condition up to 9 days at ambient temperature in contrast to the shelf life of 3 days by conventional method. The design of the equipment used for the processing of fish sausage and the method of operation are described. The keeping quality of the product from an organoleptic stand point was also studie
High temperature processing of fish sausage 4. - Heat penetration study
An examination was made of the rate of penetration of heat into fish sausage during processing at 115.6°C. Findings showed processing for 24 minutes to bring about complete destruction of Clostridium botulinum. A processing time of 30 minutes destroys almost all spoilage-causing organisms, thus prolonging the shelf life of the products
Gauge Problem in the Gravitational Self-Force II. First Post Newtonian Force under Regge-Wheeler Gauge
We discuss the gravitational self-force on a particle in a black hole
space-time. For a point particle, the full (bare) self-force diverges. It is
known that the metric perturbation induced by a particle can be divided into
two parts, the direct part (or the S part) and the tail part (or the R part),
in the harmonic gauge, and the regularized self-force is derived from the R
part which is regular and satisfies the source-free perturbed Einstein
equations. In this paper, we consider a gauge transformation from the harmonic
gauge to the Regge-Wheeler gauge in which the full metric perturbation can be
calculated, and present a method to derive the regularized self-force for a
particle in circular orbit around a Schwarzschild black hole in the
Regge-Wheeler gauge. As a first application of this method, we then calculate
the self-force to first post-Newtonian order. We find the correction to the
total mass of the system due to the presence of the particle is correctly
reproduced in the force at the Newtonian order.Comment: Revtex4, 43 pages, no figure. Version to be published in PR
Reconstruction of Black Hole Metric Perturbations from Weyl Curvature
Perturbation theory of rotating black holes is usually described in terms of
Weyl scalars and , which each satisfy Teukolsky's complex
master wave equation and respectively represent outgoing and ingoing radiation.
On the other hand metric perturbations of a Kerr hole can be described in terms
of (Hertz-like) potentials in outgoing or ingoing {\it radiation
gauges}. In this paper we relate these potentials to what one actually computes
in perturbation theory, i.e and . We explicitly construct
these relations in the nonrotating limit, preparatory to devising a
corresponding approach for building up the perturbed spacetime of a rotating
black hole. We discuss the application of our procedure to second order
perturbation theory and to the study of radiation reaction effects for a
particle orbiting a massive black hole.Comment: 6 Pages, Revtex
Soft Condensed Matter Physics
Soft condensed matter physics is the study of materials, such as fluids,
liquid crystals, polymers, colloids, and emulsions, that are ``soft" to the
touch. This article will review some properties, such as the dominance of
entropy, that are unique to soft materials and some properties such as the
interplay between broken-symmetry, dynamic mode structure, and topological
defects that are common to all condensed matter systems but which are most
easily studied in soft systems.Comment: 11 Pages, RevTeX, 7 postscript figures. To appear in Solid State
Communication
Interstellar MHD Turbulence and Star Formation
This chapter reviews the nature of turbulence in the Galactic interstellar
medium (ISM) and its connections to the star formation (SF) process. The ISM is
turbulent, magnetized, self-gravitating, and is subject to heating and cooling
processes that control its thermodynamic behavior. The turbulence in the warm
and hot ionized components of the ISM appears to be trans- or subsonic, and
thus to behave nearly incompressibly. However, the neutral warm and cold
components are highly compressible, as a consequence of both thermal
instability in the atomic gas and of moderately-to-strongly supersonic motions
in the roughly isothermal cold atomic and molecular components. Within this
context, we discuss: i) the production and statistical distribution of
turbulent density fluctuations in both isothermal and polytropic media; ii) the
nature of the clumps produced by thermal instability, noting that, contrary to
classical ideas, they in general accrete mass from their environment; iii) the
density-magnetic field correlation (or lack thereof) in turbulent density
fluctuations, as a consequence of the superposition of the different wave modes
in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio
(MFR) in density fluctuations as they are built up by dynamic compressions; v)
the formation of cold, dense clouds aided by thermal instability; vi) the
expectation that star-forming molecular clouds are likely to be undergoing
global gravitational contraction, rather than being near equilibrium, and vii)
the regulation of the star formation rate (SFR) in such gravitationally
contracting clouds by stellar feedback which, rather than keeping the clouds
from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse
Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as
per referee's recommendation
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte