112 research outputs found
Recommended from our members
Measuring large topographic change with InSAR: lava thicknesses, extrusion rate and subsidence rate at Santiaguito volcano, Guatemala
Lava flows can produce changes in topography on the order of 10s-100s of metres. A knowledge of the resulting volume
change provides evidence about the dynamics of an eruption. We present a method to measure topographic changes from the
differential InSAR phase delays caused by the height differences between the current topography and a Digital Elevation Model
(DEM). This does not require a pre-event SAR image, so it does not rely on interferometric phase remaining coherent during
eruption and emplacement. Synthetic tests predicts that we can estimate lava thickness of as little as �9 m, given a minimum of 5
interferograms with suitably large orbital baseine separations. In the case of continuous motion, such as lava flow subsidence, we
invert interferometric phase simultaneously for topographic change and displacement. We demonstrate the method using data from
Santiaguito volcano, Guatemala, and measure increases in lava thickness of up to 140 m between 2000 and 2009, largely associated
with activity between 2000 and 2005. We find a mean extrusion rate of 0.43 +/- 0.06 m3/s, which lies within the error bounds of
the longer term extrusion rate between 1922-2000. The thickest and youngest parts of the flow deposit were shown to be subsiding
at an average rate of �-6 cm/yr. This is the first time that flow thickness and subsidence have been measured simultaneously. We
expect this method to be suitable for measurment of landslides and other mass flow deposits as well as lava flows
Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change
Large igneous provinces (LIPs) are proposed to have caused a number of episodes of abrupt environmental change by increasing atmospheric CO2 levels, which were subsequently alleviated by drawdown of CO2 via enhanced continental weathering and burial of organic matter. Here the sedimentary records of two such episodes of environmental change, the Toarcian oceanic anoxic event (T-OAE) and preceding Pliensbachian–Toarcian (Pl-To) event (both possibly linked to the Karoo-Ferrar LIP), are investigated using a new suite of geochemical proxies that have not been previously compared. Stratigraphic variations in osmium isotope (187Os/188Os) records are compared with those of mercury (Hg) and carbon isotopes (d13C) in samples from the Mochras core, Llanbedr Farm, Cardigan Bay Basin, Wales. These sedimentary rocks are confirmed as recording an open-marine setting by analysis of molybdenum/uranium enrichment trends, indicating that the Os isotope record in these samples reflects the isotopic composition of the global ocean. The Os isotope data include the first results across the Pl-To boundary, when seawater 187Os/188Os increased from ~0.40 to ~0.53, in addition to new data that show elevated 187Os/188Os (from ~0.42 to ~0.68) during the T-OAE. Both increases in 187Os/188Os correlate with negative carbon isotope excursions and increased mercury concentrations, supporting an interplay between terrestrial volcanism, weathering, and climate that was instrumental in driving these distinct episodes of global environmental change. These observations also indicate that the environmental impact of the Karoo-Ferrar LIP was not limited solely to the T-OAE
From M-ary Query to Bit Query: a new strategy for efficient large-scale RFID identification
The tag collision avoidance has been viewed as one of the most important research problems in RFID communications and bit tracking technology has been widely embedded in query tree (QT) based algorithms to tackle such challenge. Existing solutions show further opportunity to greatly improve the reading performance because collision queries and empty queries are not fully explored. In this paper, a bit query (BQ) strategy based Mary query tree protocol (BQMT) is presented, which can not only eliminate idle queries but also separate collided tags into many small subsets and make full use of the collided bits. To further optimize the reading performance, a modified dual prefixes matching (MDPM) mechanism is presented to allow multiple tags to respond in the same slot and thus significantly reduce the number of queries. Theoretical analysis and simulations are supplemented to validate the effectiveness of the proposed BQMT and MDPM, which outperform the existing QT-based algorithms. Also, the BQMT and MDPM can be combined to BQMDPM to improve the reading performance in system efficiency, total identification time, communication complexity and average energy cost
The magmatic and eruptive evolution of the 1883 caldera-forming eruption of Krakatau: Integrating field- to crystal-scale observations
Explosive, caldera-forming eruptions are exceptional and hazardous volcanic phenomena. The 1883 eruption of Krakatau is the largest such event for which there are detailed contemporary written accounts, allowing information on the eruptive progression to be integrated with the stratigraphy and geochemistry of its products. Freshly exposed sequences of the 1883 eruptive deposits of Krakatau, stripped of vegetation by a tsunami generated by the flank collapse of Anak Krakatau in 2018, shed new light on the eruptive sequence. Matrix glass from the base of the stratigraphy is chemically distinct and more evolved than the overlying sequence indicating the presence of a shallow, silicic, melt-rich region that was evacuated during the early eruptive activity from May 1883 onwards. Disruption of the shallow, silicic magma may have led to the coalescence and mixing of chemically similar melts representative of a range of magmatic conditions, as evidenced by complex and varied plagioclase phenocryst zoning profiles. This mixing, over a period of two to three months, culminated in the onset of the climactic phase of the eruption on 26th August 1883. Pyroclastic density currents (PDCs) emplaced during this phase of the eruption show a change in transport direction from north east to south west, coinciding with the deposition of a lithic lag breccia unit. This may be attributed to partial collapse of an elevated portion of the island, resulting in the removal of a topographic barrier. Edifice destruction potentially further reduced the overburden on the underlying magmatic system, leading to the most explosive and energetic phase of the eruption in the morning of 27th August 1883. This phase of the eruption culminated in a final period of caldera collapse, which is recorded in the stratigraphy as a second lithic lag breccia. The massive PDC deposits emplaced during this final phase contain glassy blocks up to 8 m in size, observed for the first time in 2019, which are chemically similar to the pyroclastic sequence. These blocks are interpreted as representing stagnant, shallow portions of the magma reservoir disrupted during the final stages of caldera formation. This study provides new evidence for the role that precursory eruptions and amalgamation of shallow crustal magma bodies potentially play in the months leading up to caldera-forming eruptions
Self-limiting atmospheric lifetime of environmentally reactive elements in volcanic plumes
The 2018 eruption of Kīlauea, Hawai’i, produced exceptionally high discharge of metal
pollutant elements, and an unprecedented opportunity to track them from vent to exposed
communities over 200 km downwind. We discovered that magmatic volatility is an important
control on the atmospheric behavior of elements, with [volatile elements] decreasing up to
100 times faster after emission than [refractory elements]. The differential deposition
disproportionately impacts populated areas closest to the active vents, as the rapidlydeposited volatile elements generally have the highest environmental lability and potential
toxicity
Recommended from our members
Explosive volcanic activity on Venus: The roles of volatile contribution, degassing, and external environment
We investigate the conditions that will promote explosive volcanic activity on Venus. Conduit processes were simulated using a steady-state, isothermal, homogeneous flow model in tandem with a degassing model. The response of exit pressure, exit velocity, and degree of volatile exsolution was explored over a range of volatile concentrations (H2O and CO2), magma temperatures, vent altitudes, and conduit geometries relevant to the Venusian environment. We find that the addition of CO2 to an H2O-driven eruption increases the final pressure, velocity, and volume fraction gas. Increasing vent elevation leads to a greater degree of magma fragmentation, due to the decrease in the final pressure at the vent, resulting in a greater likelihood of explosive activity. Increasing the magmatic temperature generates higher final pressures, greater velocities, and lower final volume fraction gas values with a correspondingly lower chance of explosive volcanism. Cross-sectionally smaller, and/or deeper, conduits were more conducive to explosive activity. Model runs show that for an explosive eruption to occur at Scathach Fluctus, at Venus’ mean planetary radius (MPR), 4.5% H2O or 3% H2O with 3% CO2 (from a 25 m radius conduit) would be required to initiate fragmentation; at Ma’at Mons (~9 km above MPR) only ~2% H2O is required. A buoyant plume model was used to investigate plume behaviour. It was found that it was not possible to achieve a buoyant column from a 25 m radius conduit at Scathach Fluctus, but a buoyant column reaching up to ~20 km above the vent could be generated at Ma’at Mons with an H2O concentration of 4.7% (at 1300 K) or a mixed volatile concentration of 3% H2O with 3% CO2 (at 1200 K). We also estimate the flux of volcanic gases to the lower atmosphere of Venus, should explosive volcanism occur. Model results suggest explosive activity at Scathach Fluctus would result in an H2O flux of ~107 kg s-1. Were Scathach Fluctus emplaced in a single event, our model suggests that it may have been emplaced in a period of ~15 days, supplying 1-2 x 104 Mt H2O to the atmosphere locally. An eruption of this scale might increase local atmospheric H2O abundance by several ppm over an area large enough to be detectable by near-infrared nightside sounding using the 1.18 µm spectral window such as that carried out by the Venus Express/VIRTIS spectrometer. Further interrogation of the VIRTIS dataset is recommended to search for ongoing volcanism on Venus
Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity
Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kVm-1 to 100 kVm-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)-MicroARES (Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ measurements
The genetic architecture of the human cerebral cortex
INTRODUCTION
The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure.
RATIONALE
To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations.
RESULTS
We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness).
Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness.
To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity.
We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism.
CONCLUSION
This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function
Strong responses of Southern Ocean phytoplankton communities to volcanic ash
Volcanic eruptions have been hypothesized as an iron supply mechanism for phytoplankton blooms; however, little direct evidence of stimulatory responses has been obtained in the field. Here we present the results of twenty-one 1–2?day bottle enrichment experiments from cruises in the South Atlantic and Southern Ocean which conclusively demonstrated a photophysiological and biomass stimulation of phytoplankton communities following supply of basaltic or rhyolitic volcanic ash. Furthermore, experiments in the Southern Ocean demonstrated significant phytoplankton community responses to volcanic ash supply in the absence of responses to addition of dissolved iron alone. At these sites, dissolved manganese concentrations were among the lowest ever measured in seawater, and we therefore suggest that the enhanced response to ash may have been a result of the relief of manganese (co)limitation. Our results imply that volcanic ash deposition events could trigger extensive phytoplankton blooms, potentially capable of significant impacts on regional carbon cycling
- …