2,590 research outputs found
The origin of ultra diffuse galaxies: stellar feedback and quenching
We test if the cosmological zoom-in simulations of isolated galaxies from the
FIRE project reproduce the properties of ultra diffuse galaxies. We show that
stellar feedback-generated outflows that dynamically heat galactic stars,
together with a passively aging stellar population after imposed quenching
(from e.g. infall into a galaxy cluster), naturally reproduce the observed
population of red UDGs, without the need for high spin halos or dynamical
influence from their host cluster. We reproduce the range of surface
brightness, radius and absolute magnitude of the observed z=0 red UDGs by
quenching simulated galaxies at a range of different times. They represent a
mostly uniform population of dark matter-dominated galaxies with M_star ~1e8
Msun, low metallicity and a broad range of ages. The most massive simulated
UDGs require earliest quenching and are therefore the oldest. Our simulations
provide a good match to the central enclosed masses and the velocity
dispersions of the observed UDGs (20-50 km/s). The enclosed masses of the
simulated UDGs remain largely fixed across a broad range of quenching times
because the central regions of their dark matter halos complete their growth
early. A typical UDG forms in a dwarf halo mass range of Mh~4e10-1e11 Msun. The
most massive red UDG in our sample requires quenching at z~3 when its halo
reached Mh ~ 1e11 Msun. If it, instead, continues growing in the field, by z=0
its halo mass reaches > 5e11 Msun, comparable to the halo of an L* galaxy. If
our simulated dwarfs are not quenched, they evolve into bluer low-surface
brightness galaxies with mass-to-light ratios similar to observed field dwarfs.
While our simulation sample covers a limited range of formation histories and
halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy
type around Ms~1e8 Msun, both in the field and in clusters.Comment: 20 pages, 13 figures; match the MNRAS accepted versio
Random tree growth by vertex splitting
We study a model of growing planar tree graphs where in each time step we
separate the tree into two components by splitting a vertex and then connect
the two pieces by inserting a new link between the daughter vertices. This
model generalises the preferential attachment model and Ford's -model
for phylogenetic trees. We develop a mean field theory for the vertex degree
distribution, prove that the mean field theory is exact in some special cases
and check that it agrees with numerical simulations in general. We calculate
various correlation functions and show that the intrinsic Hausdorff dimension
can vary from one to infinity, depending on the parameters of the model.Comment: 47 page
Level Set Segmentation with Shape and Appearance Models Using Affine Moment Descriptors
We propose a level set based variational approach that incorporates shape priors into edge-based and region-based models. The evolution of the active contour depends on local and global information. It has been implemented using an efficient narrow band technique. For each boundary pixel we calculate its dynamic according to its gray level, the neighborhood and geometric properties established by training shapes. We also propose a criterion for shape aligning based on affine transformation using an image normalization procedure. Finally, we illustrate the benefits of the our approach on the liver segmentation from CT images
Apolipoprotein L1 gene variants associate with prevalent kidney but not prevalent cardiovascular disease in the Systolic Blood Pressure Intervention Trial.
Apolipoprotein L1 gene (APOL1) G1 and G2 coding variants are strongly associated with chronic kidney disease (CKD) in African Americans (AAs). Here APOL1 association was tested with baseline estimated glomerular filtration rate (eGFR), urine albumin:creatinine ratio (UACR), and prevalent cardiovascular disease (CVD) in 2571 AAs from the Systolic Blood Pressure Intervention Trial (SPRINT), a trial assessing effects of systolic blood pressure reduction on renal and CVD outcomes. Logistic regression models that adjusted for potentially important confounders tested for association between APOL1 risk variants and baseline clinical CVD (myocardial infarction, coronary, or carotid artery revascularization) and CKD (eGFR under 60 ml/min per 1.73 m(2) and/or UACR over 30 mg/g). AA SPRINT participants were 45.3% female with a mean (median) age of 64.3 (63) years, mean arterial pressure 100.7 (100) mm Hg, eGFR 76.3 (77.1) ml/min per 1.73 m(2), and UACR 49.9 (9.2) mg/g, and 8.2% had clinical CVD. APOL1 (recessive inheritance) was positively associated with CKD (odds ratio 1.37, 95% confidence interval 1.08-1.73) and log UACR estimated slope (β) 0.33) and negatively associated with eGFR (β -3.58), all significant. APOL1 risk variants were not significantly associated with prevalent CVD (1.02, 0.82-1.27). Thus, SPRINT data show that APOL1 risk variants are associated with mild CKD but not with prevalent CVD in AAs with a UACR under 1000 mg/g
An analysis of integrative outcomes in the Dayton peace negotiations
The nature of the negotiated outcomes of the eight issues of the Dayton Peace Agreement was studied in terms of their integrative and distributive aspects. in cases where integrative elements were Sound, further analysis was conducted by concentrating on Pruitt's five types of integrative solutions: expanding the pie, cost cutting, non-specific compensation, logrolling, and bridging. The results showed that real world international negotiations can arrive at integrative agreements even when they involve redistribution of resources tin this case the redistribution of former Yugoslavia). Another conclusion was that an agreement can consist of several distributive outcomes and several integrative outcomes produced by different kinds of mechanisms. Similarly, in single issues more than one mechanism can be used simultaneously. Some distributive bargaining was needed in order to determine how much compensation was required. Finally, each integrative formula had some distributive aspects as well
Exact solution of a two-type branching process: Clone size distribution in cell division kinetics
We study a two-type branching process which provides excellent description of
experimental data on cell dynamics in skin tissue (Clayton et al., 2007). The
model involves only a single type of progenitor cell, and does not require
support from a self-renewed population of stem cells. The progenitor cells
divide and may differentiate into post-mitotic cells. We derive an exact
solution of this model in terms of generating functions for the total number of
cells, and for the number of cells of different types. We also deduce large
time asymptotic behaviors drawing on our exact results, and on an independent
diffusion approximation.Comment: 16 page
Outbreak size distributions in epidemics with multiple stages
Multiple-type branching processes that model the spread of infectious
diseases are investigated. In these stochastic processes, the disease goes
through multiple stages before it eventually disappears. We mostly focus on the
critical multistage Susceptible-Infected-Recovered (SIR) infection process. In
the infinite population limit, we compute the outbreak size distributions and
show that asymptotic results apply to more general multiple-type critical
branching processes. Finally using heuristic arguments and simulations we
establish scaling laws for a multistage SIR model in a finite population.Comment: 7 pages, 2 figures; added references, final versio
Black Stork Down: Military Discourses in Bird Conservation in Malta
Tensions between Maltese hunters and bird conservation NGOs have intensified over the past decade. Conservation NGOs have become frustrated with the Maltese State for conceding to the hunter lobby and negotiating derogations from the European Union’s Bird Directive. Some NGOs have recently started to organize complex field-operations where volunteers are trained to patrol the landscape, operate drones and other surveillance technologies, detect illegalities, and lead police teams to arrest poachers. We describe the sophisticated military metaphors which conservation NGOs have developed to describe, guide and legitimize their efforts to the Maltese public and their fee-paying members. We also discuss why such groups might be inclined to adopt these metaphors. Finally, we suggest that anthropological studies of discourse could help understand delicate contexts such as this where conservation NGOs, hunting associations and the State have ended in political deadlock
Generation and characterization of radiation in biomedical applications
This Creative Inquiry, Generation and Characterization of Radiation in Biomedical Applications, fuses two scientific disciplines, physics and bioengineering, seeking a common goal. Students under Dr. Takacs and Dr. Dean, including a doctoral candidate, are designing experiments to irradiate various biomaterials, including proteins and cancer cells, with monochromatic x-rays between 1000 eV to 15000 eV, and then study the results of those interactions. This specific creative inquiry\u27s (PHYS 2990-005 and BIOE 4510-025) goal for this semester is to further understand x-ray interactions with matter, specifically biomaterials. The bioengineering students are devising specific ways to cultivate certain proteins and cell cultures, and the physicists are designing parameters for the experiments, including the production and spectroscopy of x-rays. Several of the experiments will also be utilizing Clemson\u27s EBIT (electron beam ion trap, one of two in the country) as one of the sources for such radiation. With so little data collected using instrumentation of this precision, we feel that even our short-term goals will have far reaching implications
- …