9,364 research outputs found

    Canonical treatment of two dimensional gravity as an anomalous gauge theory

    Full text link
    The extended phase space method of Batalin, Fradkin and Vilkovisky is applied to formulate two dimensional gravity in a general class of gauges. A BRST formulation of the light-cone gauge is presented to reveal the relationship between the BRST symmetry and the origin of SL(2,R)SL(2,R) current algebra. From the same principle we derive the conformal gauge action suggested by David, Distler and Kawai.Comment: 11 pages, KANAZAWA-92-1

    Ferromagnetism and orbital order in the two-orbital Hubbard model

    Full text link
    We investigate spin and orbital states of the two-orbital Hubbard model on a square lattice by using a variational Monte Carlo method at quarter-filling, i.e., the electron number per site is one. As a variational wave function, we consider a Gutzwiller projected wave function of a mean-field type wave function for a staggered spin and/or orbital ordered state. Then, we evaluate expectation value of energy for the variational wave functions by using the Monte Carlo method and determine the ground state. In the strong Coulomb interaction region, the ground state is the perfect ferromagnetic state with antiferro-orbital (AF-orbital) order. By decreasing the interaction, we find that the disordered state becomes the ground state. Although we have also considered the paramagnetic state with AF-orbital order, i.e., purely orbital ordered state, and partial ferromagnetic states with and without AF-orbital order, they do not become the ground state.Comment: 4 pages, 1 figure, accepted for publication in Journal of Physics: Conference Serie

    Multipole correlations in low-dimensional f-electron systems

    Full text link
    By using a density matrix renormalization group method, we investigate the ground-state properties of a one-dimensional three-orbital Hubbard model on the basis of a j-j coupling scheme. For B400B_4^0 \ne 0, where B40B_4^0 is a parameter to control cubic crystalline electric field effect, one orbital is itinerant, while other two are localized. Due to the competition between itinerant and localized natures, we obtain orbital ordering pattern which is sensitive to B40B_4^0, leading to a characteristic change of Γ3g\Gamma_{3g} quadrupole state into an incommensurate structure. At B40=0B_4^0 = 0, all the three orbitals are degenerate, but we observe a peak at q=0q = 0 in Γ3g\Gamma_{3g} quadrupole correlation, indicating a ferro-orbital state, and the peak at q=πq = \pi in Γ4u\Gamma_{4u} dipole correlation, suggesting an antiferromagnetic state. We also discuss the effect of Γ4u\Gamma_{4u} octupole on magnetic anisotropy.Comment: 4 pages, 3 figures, Proceedings of ASR-WYP-2005 (September 27-29, 2005, Tokai

    Fulde-Ferrell-Larkin-Ovchinnikov State in the absence of a Magnetic Field

    Full text link
    We propose that in a system with pocket Fermi surfaces, a pairing state with a finite total momentum q_tot like the Fulde-Ferrell-Larkin-Ovchinnikov state can be stabilized even without a magnetic field. When a pair is composed of electrons on a pocket Fermi surface whose center is not located at Gamma point, the pair inevitably has finite q_tot. To investigate this possibility, we consider a two-orbital model on a square lattice that can realize pocket Fermi surfaces and we apply fluctuation exchange approximation. Then, by changing the electron number n per site, we indeed find that such superconducting states with finite q_tot are stabilized when the system has pocket Fermi surfaces.Comment: 4 pages, 5 figure

    A new view of the spin echo diffusive diffraction on porous structures

    Full text link
    Analysis with the characteristic functional of stochastic motion is used for the gradient spin echo measurement of restricted motion to clarify details of the diffraction-like effect in a porous structure. It gives the diffusive diffraction as an interference of spin phase shifts due to the back-flow of spins bouncing at the boundaries, when mean displacement of scattered spins is equal to the spin phase grating prepared by applied magnetic field gradients. The diffraction patterns convey information about morphology of the surrounding media at times long enough that opposite boundaries are restricting displacements. The method explains the dependence of diffraction on the time and width of gradient pulses, as observed at the experiments and the simulations. It also enlightens the analysis of transport properties by the spin echo, particularly in systems, where the motion is restricted by structure or configuration

    Effective Crystalline Electric Field Potential in a j-j Coupling Scheme

    Full text link
    We propose an effective model on the basis of a jj-jj coupling scheme to describe local ff-electron states for realistic values of Coulomb interaction UU and spin-orbit coupling λ\lambda, for future development of microscopic theory of magnetism and superconductivity in fnf^n-electron systems, where nn is the number of local ff electrons. The effective model is systematically constructed by including the effect of a crystalline electric field (CEF) potential in the perturbation expansion in terms of 1/λ1/\lambda. In this paper, we collect all the terms up to the first order of 1/λ1/\lambda. Solving the effective model, we show the results of the CEF states for each case of nn=2\sim5 with OhO_{\rm h} symmetry in comparison with those of the Stevens Hamiltonian for the weak CEF. In particular, we carefully discuss the CEF energy levels in an intermediate coupling region with λ/U\lambda/U in the order of 0.1 corresponding to actual ff-electron materials between the LSLS and jj-jj coupling schemes. Note that the relevant energy scale of UU is the Hund's rule interaction. It is found that the CEF energy levels in the intermediate coupling region can be quantitatively reproduced by our modified jj-jj coupling scheme, when we correctly take into account the corrections in the order of 1/λ1/\lambda in addition to the CEF terms and Coulomb interactions which remain in the limit of λ\lambda=\infty. As an application of the modified jj-jj coupling scheme, we discuss the CEF energy levels of filled skutterudites with ThT_{\rm h} symmetry.Comment: 12 pages, 7 figures. Typeset with jpsj2.cl

    Intrabeam Scattering Analysis of ATF Beam Measurements

    Get PDF
    At the Accelerator Test Facility (ATF) at KEK intrabeam scattering (IBS) is a strong effect for an electron machine. It is an effect that couples all dimensions of the beam, and in April 2000, over a short period of time, all dimensions were measured as functions of current. In this report we derive a simple relation for the growth rates of emittances due to IBS. We apply the theories of Bjorken-Mtingwa, Piwinski, and a formula due to Raubenheimer to the ATF parameters, and find that the results all agree (if in Piwinski's formalism we replace the dispersion squared over beta by the dispersion invariant). Finally, we compare theory, including the effect of potential well bunch lengthening, with the April 2000 measurements, and find reasonably good agreement in the energy spread and horizontal emittance dependence on current. The vertical emittance measurement, however, implies that either: there is error in the measurement (equivalent to an introduction of 0.6% x-y coupling error), or the effect of intrabeam scattering is stronger than predicted (35% stronger in growth rates).Comment: 4 pages, 3 figures, Presented at IEEE Particle Accelerator Conferenc

    Quadrupole Susceptibility of Gd-Based Filled Skutterudite Compounds

    Full text link
    It is shown that quadrupole susceptibility can be detected in Gd compounds contrary to our textbook knowledge that Gd3+^{3+} ion induces pure spin moment due to the Hund's rules in an LSLS coupling scheme. The ground-state multiplet of Gd3+^{3+} is always characterized by JJ=7/2, where JJ denotes total angular momentum, but in a jj-jj coupling scheme, one ff electron in jj=7/2 octet carries quadrupole moment, while other six electrons fully occupy jj=5/2 sextet, where jj denotes one-electron total angular momentum. For realistic values of Coulomb interaction and spin-orbit coupling, the ground-state wavefunction is found to contain significant amount of the jj-jj coupling component. From the evaluation of quadrupole susceptibility in a simple mean-field approximation, we point out a possibility to detect the softening of elastic constant in Gd-based filled skutterudites.Comment: 8 pages, 4 figure
    corecore