21,064 research outputs found

    Scanpath assessment of visible and infrared side-by-side and fused video displays

    Get PDF

    5-State Rotation-Symmetric Number-Conserving Cellular Automata are not Strongly Universal

    Full text link
    We study two-dimensional rotation-symmetric number-conserving cellular automata working on the von Neumann neighborhood (RNCA). It is known that such automata with 4 states or less are trivial, so we investigate the possible rules with 5 states. We give a full characterization of these automata and show that they cannot be strongly Turing universal. However, we give example of constructions that allow to embed some boolean circuit elements in a 5-states RNCA

    Effect of alloying on mechanical properties of as cast ferritic nodular cast irons

    Get PDF
    The development of low temperature applications for ferritic nodular cast irons calls for improved materials in the as cast state, e.g. for off-shore windmills components. Within this line of work, a series of 68 castings were prepared with the same casting procedure and slight changes in composition. The tensile properties at room temperature, as well as the impact energy for rupture at room temperature, 220 °C and 240 °C, were measured. Outputs from multivariate analysis performed on the data are then discussed and compared to literature results, putting emphasis on the properties of the ferritic matrix

    Novel Methodology for Scaling and Simulating Structural Behaviour for Soil-Structure Systems Subjected to Extreme Loading Conditions

    Get PDF
    This paper is concerned with the calibration and validation of a numerical procedure for the analysis of pile performance in soft clays during seismic soil–pile–superstructure interaction (SSPSI) scenarios. Currently, there are no widely accepted methods or guidelines. Centrifuge and shaking table model tests are often used to supplement the available field case histories with the data obtained under controlled conditions. This paper presents a new calibration method for establishing a reliable and accurate relationship between full-scale numerical analysis and scaled laboratory tests in a 1g environment. A sophisticated approach to scaling and validating full-scale seismic soil–structure interaction problems is proposed that considers the scaling concept of implied prototypes as well as “modelling of models” techniques that can ensure an excellent level of accuracy. In this study, a new methodology was developed that can provide an accurate, practical, and scientific calibration for the relationship between full-scale numerical analysis and scaled laboratory tests in the 1g environment. The framework can be followed by researchers who intend to validate their seismic soil–structure interaction findings

    Using Technology to Encourage Self-Directed Learning: The Collaborative Lecture Annotation System

    Get PDF
    The rapidly-developing 21st century world of work and knowledge calls for self-directed lifelong (SDL) learners. While higher education must embrace the types of pedagogies that foster SDL skills in graduates, the pace of change in education can be glacial. This paper describes a social annotation technology, the Collaborative Lecture Annotation System (CLAS), that can be used to leverage existing teaching and learning practices for acquisition of 21st Century SDL skills. CLAS was designed to build upon the artifacts of traditional didactic modes of teaching, create enriched opportunities for student engagement with peers and learning materials, and offer learners greater control and ownership of their individual learning strategies. Adoption of CLAS creates educational experiences that promote and foster SDL skills: motivation, self-management and self-monitoring. In addition, CLAS incorporates a suite of learning analytics for learners to evaluate their progress, and allow instructors to monitor the development of SDL skills and identify the need for learning support and guidance. CLAS stands as an example of a simple tool that can bridge the gap between traditional transmissive pedagogy and the creation of authentic and collaborative learning spaces

    In vivo analysis of the Escherichia coli ultrastructure by small-angle scattering

    Get PDF
    The flagellated Gram-negative bacterium Escherichia coli is one of the most studied microorganisms. Despite extensive studies as a model prokaryotic cell, the ultrastructure of the cell envelope at the nanometre scale has not been fully elucidated. Here, a detailed structural analysis of the bacterium using a combination of small-angle X-ray and neutron scattering (SAXS and SANS, respectively) and ultra-SAXS (USAXS) methods is presented. A multiscale structural model has been derived by incorporating well established concepts in soft-matter science such as a core-shell colloid for the cell body, a multilayer membrane for the cell wall and self-avoiding polymer chains for the flagella. The structure of the cell envelope was resolved by constraining the model by five different contrasts from SAXS, and SANS at three contrast match points and full contrast. This allowed the determination of the membrane electron-density profile and the inter-membrane distances on a quantitative scale. The combination of USAXS and SAXS covers size scales from micrometres down to nanometres, enabling the structural elucidation of cells from the overall geometry down to organelles, thereby providing a powerful method for a noninvasive investigation of the ultrastructure. This approach may be applied for probing in vivo the effect of detergents, antibiotics and antimicrobial peptides on the bacterial cell wall

    Statistical methods for linking geostatistical maps and transmission models: Application to lymphatic filariasis in East Africa.

    Get PDF
    Infectious diseases remain one of the major causes of human mortality and suffering. Mathematical models have been established as an important tool for capturing the features that drive the spread of the disease, predicting the progression of an epidemic and hence guiding the development of strategies to control it. Another important area of epidemiological interest is the development of geostatistical methods for the analysis of data from spatially referenced prevalence surveys. Maps of prevalence are useful, not only for enabling a more precise disease risk stratification, but also for guiding the planning of more reliable spatial control programmes by identifying affected areas. Despite the methodological advances that have been made in each area independently, efforts to link transmission models and geostatistical maps have been limited. Motivated by this fact, we developed a Bayesian approach that combines fine-scale geostatistical maps of disease prevalence with transmission models to provide quantitative, spatially-explicit projections of the current and future impact of control programs against a disease. These estimates can then be used at a local level to identify the effectiveness of suggested intervention schemes and allow investigation of alternative strategies. The methodology has been applied to lymphatic filariasis in East Africa to provide estimates of the impact of different intervention strategies against the disease.MBG

    Gestational surrogacy for women with recurrent pregnancy loss due to refractory chronic histiocytic intervillositis

    Get PDF
    • 

    corecore