32,582 research outputs found

    Mapping EK Draconis with PEPSI - Possible evidence for starspot penumbrae

    Full text link
    We present the first temperature surface map of EK Dra from very-high-resolution spectra obtained with the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope. Changes in spectral line profiles are inverted to a stellar surface temperature map using our iiMap code. The long-term photometric record is employed to compare our map with previously published maps. Four cool spots were reconstructed, but no polar spot was seen. The temperature difference to the photosphere of the spots is between 990 and 280K. Two spots are reconstructed with a typical solar morphology with an umbra and a penumbra. For the one isolated and relatively round spot (A), we determine an umbral temperature of 990K and a penumbral temperature of 180K below photospheric temperature. The umbra to photosphere intensity ratio of EK Dra is approximately only half of that of a comparison sunspot. A test inversion from degraded line profiles showed that the higher spectral resolution of PEPSI reconstructs the surface with a temperature difference that is on average 10% higher than before and with smaller surface areas by 10-20%. PEPSI is therefore better suited to detecting and characterising temperature inhomogeneities. With ten more years of photometry, we also refine the spot cycle period of EK Dra to 8.9±\pm0.2 years with a continuing long-term fading trend. The temperature morphology of spot A so far appears to show the best evidence for the existence of a solar-like penumbra for a starspot. We emphasise that it is more the non-capture of the true umbral contrast rather than the detection of the weak penumbra that is the limiting factor. The relatively small line broadening of EK Dra, together with the only moderately high spectral resolutions previously available, appear to be the main contributors to the lower-than-expected spot contrasts when comparing to the Sun.Comment: Accepted for A&

    Non-destructive interferometric characterization of an optical dipole trap

    Get PDF
    A method for non-destructive characterization of a dipole trapped atomic sample is presented. It relies on a measurement of the phase-shift imposed by cold atoms on an optical pulse that propagates through a free space Mach-Zehnder interferometer. Using this technique we are able to determine, with very good accuracy, relevant trap parameters such as the atomic sample temperature, trap oscillation frequencies and loss rates. Another important feature is that our method is faster than conventional absorption or fluorescence techniques, allowing the combination of high-dynamical range measurements and a reduced number of spontaneous emission events per atom.Comment: 9 pages, 6 figures, submitted to PR

    A steerable UV laser system for the calibration of liquid argon time projection chambers

    Get PDF
    A number of liquid argon time projection chambers (LAr TPC's) are being build or are proposed for neutrino experiments on long- and short baseline beams. For these detectors a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL)

    A method to suppress dielectric breakdowns in liquid argon ionization detectors for cathode to ground distances of several millimeters

    Get PDF
    We present a method to reach electric field intensity as high as 400 kV/cm in liquid argon for cathode-ground distances of several millimeters. This can be achieved by suppressing field emission from the cathode, overcoming limitations that we reported earlier

    Long-Range Ordering of Vibrated Polar Disks

    Get PDF
    Vibrated polar disks have been used experimentally to investigate collective motion of driven particles, where fully-ordered asymptotic regimes could not be reached. Here we present a model reproducing quantitatively the single, binary and collective properties of this granular system. Using system sizes not accessible in the laboratory, we show in silico that true long-range order is possible in the experimental system. Exploring the model's parameter space, we find a phase diagram qualitatively different from that of dilute or point-like particle systems.Comment: 5 pages, 4 figure

    Exponential beams of electromagnetic radiation

    Get PDF
    We show that in addition to well known Bessel, Hermite-Gauss, and Laguerre-Gauss beams of electromagnetic radiation, one may also construct exponential beams. These beams are characterized by a fall-off in the transverse direction described by an exponential function of rho. Exponential beams, like Bessel beams, carry definite angular momentum and are periodic along the direction of propagation, but unlike Bessel beams they have a finite energy per unit beam length. The analysis of these beams is greatly simplified by an extensive use of the Riemann-Silberstein vector and the Whittaker representation of the solutions of the Maxwell equations in terms of just one complex function. The connection between the Bessel beams and the exponential beams is made explicit by constructing the exponential beams as wave packets of Bessel beams.Comment: Dedicated to the memory of Edwin Powe

    Proton Fall or Bicarbonate Rise: Glycolytic Rate In Mouse Astrocytes Is Paved By Intracellular Alkalinization

    Get PDF
    Glycolysis is the primary step for major energy production in the cell. There is strong evidence suggesting that glucose consumption and rate of glycolysis are highly modulated by cytosolic pH/[H(+)], but those can also be stimulated by an increase in the intracellular [HCO3 (-)]. Because proton and bicarbonate shift concomitantly, it remained unclear whether enhanced glucose consumption and glycolytic rate were mediated by the changes in intracellular [H(+)] or [HCO3 (-)]. We have asked whether glucose metabolism is enhanced by either a fall in intracellular [H(+)] or a rise in intracellular [HCO3 (-)], or by both, in mammalian astrocytes. We have recorded intracellular glucose in mouse astrocytes using a FRET-based nanosensor, while imposing different intracellular [H(+)] and [CO2]/[HCO3 (-)]. Glucose consumption and glycolytic rate were augmented by a fall in intracellular [H(+)], irrespective of a concomitant rise or fall in intracellular [HCO3 (-)]. Transport of HCO3 (-) into and out of astrocytes by the electrogenic sodium bicarbonate cotransporter (NBCe1) played a crucial role in causing changes in intracellular pH and [HCO3 (-)], but was not obligatory for the pH-dependent changes in glucose metabolism. Our results clearly show that it is the cytosolic pH that modulates glucose metabolism in cortical astrocytes, and possibly also in other cell types

    Measurement of the drift field in the ARGONTUBE LAr TPC with 266~nm pulsed laser beams

    Get PDF
    ARGONTUBE is a liquid argon time projection chamber (LAr TPC) with a drift field generated in-situ by a Greinacher voltage multiplier circuit. We present results on the measurement of the drift-field distribution inside ARGONTUBE using straight ionization tracks generated by an intense UV laser beam. Our analysis is based on a simplified model of the charging of a multi-stage Greinacher circuit to describe the voltages on the field cage rings
    corecore