41,260 research outputs found
Measure Factors, Tension, and Correlations of Fluid Membranes
We study two geometrical factors needed for the correct construction of
statistical ensembles of surfaces. Such ensembles appear in the study of fluid
bilayer membranes, though our results are more generally applicable. The naive
functional measure over height fluctuations must be corrected by these factors
in order to give correct, self-consistent formulas for the free energy and
correlation functions of the height. While one of these corrections -- the
Faddeev-Popov determinant -- has been studied extensively, our derivation
proceeds from very simple geometrical ideas, which we hope removes some of its
mystery. The other factor is similar to the Liouville correction in string
theory. Since our formulas differ from those of previous authors, we include
some explicit calculations of the effective frame tension and two-point
function to show that our version indeed secures coordinate-invariance and
consistency to lowest nontrivial order in a temperature expansion.Comment: 24 pp; plain Te
Phenomenology of loop quantum cosmology
After introducing the basic ingredients of Loop Quantum Cosmology, I will
briefly discuss some of its phenomenological aspects. Those can give some
useful insight about the full Loop Quantum Gravity theory and provide an answer
to some long-standing questions in early universe cosmology.Comment: 16 pages, 3 figures; Invited talk in the First Mediterranean
Conference on Classical and Quantum Gravity (Crete, Greece
A high-Reynolds-number seal test facility: Facility description and preliminary test data
A facility has been developed for testing the leakage and rotordynamic characteristics of interstage-seal configurations for the HPFTP (High Pressure Fuel Turbopump) of the SSME (Space Shuttle Main Engine). Axial Reynolds numbers on the order of 400,000 are realized in the test facility by using a Dupont freon fluid called Halon (CBrF3). The kinematic viscosity of Halon is of the same order as the liquid hydrogen used in the HPFTP. Initial testing has focused on the current flight configurations (a three-segment, stepped unit) and a convergent-taper candidate
Extracting Spooky-activation-at-a-distance from Considerations of Entanglement
Following an early claim by Nelson & McEvoy \cite{Nelson:McEvoy:2007}
suggesting that word associations can display `spooky action at a distance
behaviour', a serious investigation of the potentially quantum nature of such
associations is currently underway. This paper presents a simple quantum model
of a word association system. It is shown that a quantum model of word
entanglement can recover aspects of both the Spreading Activation equation and
the Spooky-activation-at-a-distance equation, both of which are used to model
the activation level of words in human memory.Comment: 13 pages, 2 figures; To appear in Proceedings of the Third Quantum
Interaction Symposium, Lecture Notes in Artificial Intelligence, vol 5494,
Springer, 200
Three Numerical Puzzles and the Top Quark's Chiral Weak-Moment
Versus the standard model's t --> W b decay helicity amplitudes, three
numerical puzzles occur at the 0.1 % level when one considers the amplitudes in
the case of an additional (f_M + f_E) coupling of relative strength 53 GeV. The
puzzles are theoretical ones which involve the t --> W b decay helicity
amplitudes in the two cases, the relative strength of this additional coupling,
and the observed masses of these three particles. A deeper analytic realization
is obtained for two of them. Equivalent realizations are given for the
remaining one. An empirical consequence of these analytic realizations is that
it is important to search for effects of a large chiral weak-moment of the
top-quark, the effective mass-scale is about 53 GeV. A full theoretical
resolution would include relating the origin of such a chiral weak-moment and
the mass generation of the top-quark, the W-boson, and probably the b-quark.Comment: 18 pages, 1 postscript table (revised to better explain notation,
model #1, add a little material...
Energy versus electron transfer in organic solar cells: a comparison of the photophysics of two indenofluorene: fullerene blend films
In this paper, we compare the photophysics and photovoltaic device performance of two indenofluorene based polymers: poly[2,8-(6,6,12,12-tetraoctylindenofluorene)-co-4,7-(2,1,3-benzothiodiazole] (IF8BT) and poly[2,8-(6,6,12,12-tetraoctylindenofluorene)-co-5,5-(40,70-di-2-thienyl-20,10,30-benzothiodiazole] (IF8TBTT) blended with [6,6]-phenyl C61 butyric acid methyl ester (PCBM). Photovoltaic devices made with IF8TBTT exhibit greatly superior photocurrent generation and photovoltaic efficiency compared to those made with IF8BT. The poor device efficiency of IF8BT/PCBM devices is shown to result from efficient, ultrafast singlet F€orster energy transfer from IF8BT to PCBM, with the resultant PCBM singlet exciton lacking sufficient energy to drive charge photogeneration. The higher photocurrent generation observed for IF8TBTT/PCBM devices is shown to result from IF8TBTT’s relatively weak, red-shifted photoluminescence characteristics, which switches off the polymer to fullerene singlet energy transfer pathway. As a consequence, IF8TBTT singlet excitons are able to drive charge separation at the polymer/fullerene interface, resulting in efficient photocurrent generation. These results are discussed in terms of the impact of donor/acceptor energy transfer upon photophysics and energetics of charge photogeneration in organic photovoltaic\ud
devices. The relevance of these results to the design of polymers for organic photovoltaic applications is also discussed, particularly with regard to explaining why highly luminescent polymers developed for organic light emitting diode applications often give relatively poor performance in organic photovoltaic devices
Longitudinal Current Dissipation in Bose-glass Superconductors
A scaling theory of vortex motion in Bose glass superconductors with currents
parallel to the common direction of the magnetic field and columnar defects is
presented. Above the Bose-glass transition the longitudinal DC resistivity
vanishes much faster than the
corresponding transverse resistivity , thus {\it reversing} the usual anisotropy of electrical transport in
the normal state of layered superconductors. In the presence of a current at an angle with the common field and columnar defect axis, the
electric field angle approaches as .
Scaling also predicts the behavior of penetration depths for the AC currents as
, and implies a {\it jump discontinuity} at in
the superfluid density describing transport parallel to the columns.Comment: 5 pages, revte
Edge helicons and repulsion of fundamental edge magnetoplasmons in the quantum Hall regime
A quasi-microscopic treatment of edge magnetoplasmons (EMP) is presented for
very low temperatures and confining potentials smooth on the scale of the
magnetic length but sufficiently steep at the edges such that Landau
level (LL) flattening can be discarded. The profile of the unperturbed electron
density is sharp and the dissipation taken into account comes only from
electron intra-edge and intra-LL transitions due to scattering by acoustic
phonons. For wide channels and filling factors and 2, there exist
independent EMP modes spatially symmetric and antisymmetric with respect to the
edge. Some of these modes, named edge helicons, can propagate nearly undamped
even when the dissipation is strong. Their density profile changes
qualitatively during propagation and is given by a rotation of a complex vector
function. For the Coulomb coupling between the LLs leads to a
repulsion of the uncoupled fundamental LL modes: the new modes have very
different group velocities and are nearly undamped. The theory accounts well
for the experimentally observed plateau structure of the delay times as well as
for the EMP's period and decay rates.Comment: 12 pages, 6 figure
- …