12 research outputs found
Resting-State Quantitative Electroencephalography Reveals Increased Neurophysiologic Connectivity in Depression
Symptoms of Major Depressive Disorder (MDD) are hypothesized to arise from dysfunction in brain networks linking the limbic system and cortical regions. Alterations in brain functional cortical connectivity in resting-state networks have been detected with functional imaging techniques, but neurophysiologic connectivity measures have not been systematically examined. We used weighted network analysis to examine resting state functional connectivity as measured by quantitative electroencephalographic (qEEG) coherence in 121 unmedicated subjects with MDD and 37 healthy controls. Subjects with MDD had significantly higher overall coherence as compared to controls in the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–20 Hz) frequency bands. The frontopolar region contained the greatest number of “hub nodes” (surface recording locations) with high connectivity. MDD subjects expressed higher theta and alpha coherence primarily in longer distance connections between frontopolar and temporal or parietooccipital regions, and higher beta coherence primarily in connections within and between electrodes overlying the dorsolateral prefrontal cortical (DLPFC) or temporal regions. Nearest centroid analysis indicated that MDD subjects were best characterized by six alpha band connections primarily involving the prefrontal region. The present findings indicate a loss of selectivity in resting functional connectivity in MDD. The overall greater coherence observed in depressed subjects establishes a new context for the interpretation of previous studies showing differences in frontal alpha power and synchrony between subjects with MDD and normal controls. These results can inform the development of qEEG state and trait biomarkers for MDD
Interoception in anxiety and depression
We review the literature on interoception as it relates to depression and anxiety, with a focus on belief, and alliesthesia. The connection between increased but noisy afferent interoceptive input, self-referential and belief-based states, and top-down modulation of poorly predictive signals is integrated into a neuroanatomical and processing model for depression and anxiety. The advantage of this conceptualization is the ability to specifically examine the interface between basic interoception, self-referential belief-based states, and enhanced top-down modulation to attenuate poor predictability. We conclude that depression and anxiety are not simply interoceptive disorders but are altered interoceptive states as a consequence of noisily amplified self-referential interoceptive predictive belief states
The Fair Trade Idea: Towards an Economics of Social Labels
The concept of Fair Trade is applied to the marketing of a variety of goods. In recent years it has met a continually increasing interest among consumers. Different Fair Trade organizations are trying to accomplish an improvement in working and living conditions in developing countries by means of Fair Trade certificates and by paying a price markedly above world market standard. This is meant to lead to the attainment of basic social standards, especially in agricultural production. The article deals with how Fair Trade works and whether the social aims can be achieved by the application of this trade concept. Our main result is that even though efficiency of redistribution through the Fair Trade institutions is lower than through traditional relief organizations, the Fair Trade concept provides an additional incentive to support better living conditions in the Third World. Moreover, it provides a stimulus for producers to reorganize the production process in a socially more acceptable manner even when this is not rewarded by the Fair Trade company. Copyright Springer Science+Business Media, LLC 2007Fair trade, Social labels, International trade, Sustainability, Social justice, Extrinsic product quality,
Increased cerebral blood flow in the right frontal lobe area during sleep precedes self-awakening in humans
<p>Abstract</p> <p>Background</p> <p>Some people can subconsciously wake up naturally (self-awakening) at a desired/planned time without external time stimuli. However, the underlying mechanism regulating this ability remains to be elucidated. This study sought to examine the relationship between hemodynamic changes in oxyhemoglobin (oxy-Hb) level in the prefrontal cortex and sleep structures during sleep in subjects instructed to self-awaken.</p> <p>Results</p> <p>Fifteen healthy right-handed male volunteers with regular sleep habits participated in a consecutive two-night crossover study. The subjects were instructed to wake up at a specified time (“request” condition) or instructed to sleep until the morning but forced to wake up at 03:00 without prior notice (“surprise” condition). Those who awoke within ± 30 min of the planned waking time were defined as those who succeeded in self-awakening (“success” group). Seven subjects succeeded in self-awakening and eight failed.</p> <p>No significant differences were observed in the amounts of sleep in each stage between conditions or between groups. On the “request” night, an increase in oxy-Hb level in the right prefrontal cortex and a decrease in δ power were observed in the “success” group around 30 min before self-awakening, whereas no such changes were observed in the “failure” group. On the “surprise” night, no significant changes were observed in oxy-Hb level or δ power in either group.</p> <p>Conclusions</p> <p>These findings demonstrate a correlation between self-awakening and a pre-awakening increase in hemodynamic activation in the right prefrontal cortex, suggesting the structure’s contribution to time estimation ability.</p