33,324 research outputs found
Vacuum polarization near cosmic string in RS2 brane world
Gravitational field of cosmic strings in theories with extra spatial
dimensions must differ significantly from that in the Einstein's theory. This
means that all gravity induced properties of cosmic strings need to be revised
too. Here we consider the effect of vacuum polarization outside a straight
infinitely thin cosmic string embedded in a RS2 brane world. Perturbation
technique combined with the method of dimensional regularization is used to
calculate for a massless scalar field.Comment: 8 pages, RevTeX
Revisiting the slow dynamics of a silica melt using Monte Carlo simulations
We implement a standard Monte Carlo algorithm to study the slow, equilibrium
dynamics of a silica melt in a wide temperature regime, from 6100 K down to
2750 K. We find that the average dynamical behaviour of the system is in
quantitative agreement with results obtained from molecular dynamics
simulations, at least in the long-time regime corresponding to the
alpha-relaxation. By contrast, the strong thermal vibrations related to the
Boson peak present at short times in molecular dynamics are efficiently
suppressed by the Monte Carlo algorithm. This allows us to reconsider silica
dynamics in the context of mode-coupling theory, because several shortcomings
of the theory were previously attributed to thermal vibrations. A mode-coupling
theory analysis of our data is qualitatively correct, but quantitative tests of
the theory fail, raising doubts about the very existence of an avoided
singularity in this system. We discuss the emergence of dynamic heterogeneity
and report detailed measurements of a decoupling between translational
diffusion and structural relaxation, and of a growing four-point dynamic
susceptibility. Dynamic heterogeneity appears to be less pronounced than in
more fragile glass-forming models, but not of a qualitatively different nature.Comment: 13 pages, 10 figures; to be published in Phys. Rev.
The optimal P3M algorithm for computing electrostatic energies in periodic systems
We optimize Hockney and Eastwood's Particle-Particle Particle-Mesh (P3M)
algorithm to achieve maximal accuracy in the electrostatic energies (instead of
forces) in 3D periodic charged systems. To this end we construct an optimal
influence function that minimizes the RMS errors in the energies. As a
by-product we derive a new real-space cut-off correction term, give a
transparent derivation of the systematic errors in terms of Madelung energies,
and provide an accurate analytical estimate for the RMS error of the energies.
This error estimate is a useful indicator of the accuracy of the computed
energies, and allows an easy and precise determination of the optimal values of
the various parameters in the algorithm (Ewald splitting parameter, mesh size
and charge assignment order).Comment: 31 pages, 3 figure
Liquid crystal director fluctuations and surface anchoring by molecular simulation
We propose a simple and reliable method to measure the liquid crystal surface
anchoring strength by molecular simulation. The method is based on the
measurement of the long-range fluctuation modes of the director in confined
geometry. As an example, molecular simulations of a liquid crystal in slab
geometry between parallel walls with homeotropic anchoring have been carried
out using the Monte Carlo technique. By studying different slab thicknesses, we
are able to calculate separately the position of the elastic boundary
condition, and the extrapolation length
Chemical Segregation in Hot Cores With Disk Candidates: An investigation with ALMA
In the study of high-mass star formation, hot cores are empirically defined
stages where chemically rich emission is detected toward a massive YSO. It is
unknown whether the physical origin of this emission is a disk, inner envelope,
or outflow cavity wall and whether the hot core stage is common to all massive
stars. We investigate the chemical make up of several hot molecular cores to
determine physical and chemical structure. We use high spectral and spatial
resolution Cycle 0 ALMA observations to determine how this stage fits into the
formation sequence of a high mass star. We observed the G35.20-0.74N and
G35.03+0.35 hot cores at 350 GHz. We analyzed spectra and maps from four
continuum peaks (A, B1, B2 and B3) in G35.20, separated by 1000-2000 AU, and
one continuum peak in G35.03. We made all possible line identifications across
8 GHz of spectral windows of molecular emission lines and determined column
densities and temperatures for as many as 35 species assuming local
thermodynamic equilibrium. In comparing the spectra of the four peaks, we find
each has a distinct chemical composition expressed in over 400 different
transitions. In G35.20, B1 and B2 contain oxygen- and sulfur-bearing organic
and inorganic species but few nitrogen-bearing species whereas A and B3 are
strong sources of O, S, and N-bearing species (especially those with the
CN-bond). CHDCN is clearly detected in A and B3 with D/H ratios of 8 and
13, respectively, but is much weaker at B1 and undetected at B2. No
deuterated species are detected in G35.03, but similar molecular abundances to
G35.20 were found in other species. We also find co-spatial emission of HNCO
and NHCHO in both sources indicating a strong chemical link between the two
species. The chemical segregation between N-bearing organic species and others
in G35.20 suggests the presence of multiple protostars, surrounded by a disk or
torus.Comment: 14 pages with 13 figures main text, 54 pages appendi
Gravitational wave bursts from cusps and kinks on cosmic strings
The strong beams of high-frequency gravitational waves (GW) emitted by cusps
and kinks of cosmic strings are studied in detail. As a consequence of these
beams, the stochastic ensemble of GW's generated by a cosmological network of
oscillating loops is strongly non Gaussian, and includes occasional sharp
bursts that stand above the ``confusion'' GW noise made of many smaller
overlapping bursts. Even if only 10% of all string loops have cusps these
bursts might be detectable by the planned GW detectors LIGO/VIRGO and LISA for
string tensions as small as . In the implausible case
where the average cusp number per loop oscillation is extremely small, the
smaller bursts emitted by the ubiquitous kinks will be detectable by LISA for
string tensions as small as . We show that the strongly
non Gaussian nature of the stochastic GW's generated by strings modifies the
usual derivation of constraints on from pulsar timing experiments. In
particular the usually considered ``rms GW background'' is, when G \mu \gaq
10^{-7}, an overestimate of the more relevant confusion GW noise because it
includes rare, intense bursts. The consideration of the confusion GW noise
suggests that a Grand Unified Theory (GUT) value is
compatible with existing pulsar data, and that a modest improvement in pulsar
timing accuracy could detect the confusion noise coming from a network of cuspy
string loops down to . The GW bursts discussed here might
be accompanied by Gamma Ray Bursts.Comment: 24 pages, 3 figures, Revtex, submitted to Phys. Rev.
Winnerless competition between sensory neurons generates chaos: A possible mechanism for molluscan hunting behavior
© 2002 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.In the presence of prey, the marine mollusk Clione limacina exhibits search behavior, i.e., circular motions whose plane and radius change in a chaotic-like manner. We have formulated a dynamical model of the chaotic hunting behavior of Clione based on physiological in vivo and in vitroexperiments. The model includes a description of the action of the cerebral hunting interneuron on the receptor neurons of the gravity sensory organ, the statocyst. A network of six receptor model neurons with Lotka–Volterra-type dynamics and nonsymmetric inhibitory interactions has no simple static attractors that correspond to winner take all phenomena. Instead, the winnerless competition induced by the hunting neuron displays hyperchaos with two positive Lyapunov exponents. The origin of the chaos is related to the interaction of two clusters of receptor neurons that are described with two heteroclinic loops in phase space. We hypothesize that the chaotic activity of the receptor neurons can drive the complex behavior of Clione observed during hunting.Support for this work came from NIH Grant No. 2R01 NS38022- 05A1. P.V. acknowledges support from MCT BFI2000-0157. M.R. acknowledges support from U.S. Department of Energy Grant No. DE-FG03-96ER14592
Thermodynamics of Two - Band Superconductors: The Case of MgB
Thermodynamic properties of the multiband superconductor MgB have often
been described using a simple sum of the standard BCS expressions corresponding
to - and -bands. Although, it is \textit{a priori} not clear if
this approach is working always adequately, in particular in cases of strong
interband scattering. Here we compare the often used approach of a sum of two
independent bands using BCS-like -model expressions for the specific
heat, entropy and free energy to the solution of the full Eliashberg equations.
The superconducting energy gaps, the free energy, the entropy and the heat
capacity for varying interband scattering rates are calculated within the
framework of two-band Eliashberg theory. We obtain good agreement between the
phenomenological two-band -model with the Eliashberg results, which
delivers for the first time the theoretical verification to use the
-model as a useful tool for a reliable analysis of heat capacity data.
For the thermodynamic potential and the entropy we demonstrate that only the
sum over the contributions of the two bands has physical meaning.Comment: 27 pages, 10 figures, 1 table, submitted to Phys. Rev.
Analytic Quantization of the QCD String
We perform an analytic semi-classical quantization of the straight QCD string
with one end fixed and a massless quark on the other, in the limits of orbital
and radial dominant motion. We compare our results to the exact numerical
semi-classical quantization. We observe that the numerical semi-classical
quantization agrees well with our exact numerical canonical quantization.Comment: RevTeX, 10 pages, 9 figure
- …