1,472 research outputs found

    Relationship between resistivity and specific heat in a canonical non-magnetic heavy fermion alloy system: UPt_5-xAu_x

    Full text link
    UPt_(5-x)Au_x alloys form in a single crystal structure, cubic AuBe_5-type, over a wide range of concentrations from x = 0 to at least x = 2.5. All investigated alloys, with an exception for x = 2.5, were non-magnetic. Their electronic specific heat coefficient γ\gamma varies from about 60 (x = 2) to about 700 mJ/mol K^2 (x = 1). The electrical resistivity for all alloys has a Fermi-liquid-like temperature variation, \rho = \rho_o + AT^2, in the limit of T -> 0 K. The coefficient A is strongly enhanced in the heavy-fermion regime in comparison with normal and transition metals. It changes from about 0.01 (x = 0) to over 2 micro-ohm cm/K^2 (x = 1). A/\gamma^2, which has been postulated to have a universal value for heavy-fermions, varies from about 10^-6 (x = 0, 0.5) to 10^-5 micro-ohm cm (mol K/mJ)^2 (x > 1.1), thus from a value typical of transition metals to that found for some other heavy-fermion metals. This ratio is unaffected, or only weakly affected, by chemical or crystallographic disorder. It correlates with the paramagnetic Curie-Weiss temperature of the high temperature magnetic susceptibility.Comment: 5 pages, 5 eps figures, RevTe

    Gauging kinematical and internal symmetry groups for extended systems: the Galilean one-time and two-times harmonic oscillators

    Get PDF
    The possible external couplings of an extended non-relativistic classical system are characterized by gauging its maximal dynamical symmetry group at the center-of-mass. The Galilean one-time and two-times harmonic oscillators are exploited as models. The following remarkable results are then obtained: 1) a peculiar form of interaction of the system as a whole with the external gauge fields; 2) a modification of the dynamical part of the symmetry transformations, which is needed to take into account the alteration of the dynamics itself, induced by the {\it gauge} fields. In particular, the Yang-Mills fields associated to the internal rotations have the effect of modifying the time derivative of the internal variables in a scheme of minimal coupling (introduction of an internal covariant derivative); 3) given their dynamical effect, the Yang-Mills fields associated to the internal rotations apparently define a sort of Galilean spin connection, while the Yang-Mills fields associated to the quadrupole momentum and to the internal energy have the effect of introducing a sort of dynamically induced internal metric in the relative space.Comment: 32 pages, LaTex using the IOP preprint macro package (ioplppt.sty available at: http://www.iop.org/). The file is available at: http://www.fis.unipr.it/papers/1995.html The file is a uuencoded tar gzip file with the IOP preprint style include

    A generalized Hamiltonian Constraint Operator in Loop Quantum Gravity and its simplest Euclidean Matrix Elements

    Get PDF
    We study a generalized version of the Hamiltonian constraint operator in nonperturbative loop quantum gravity. The generalization is based on admitting arbitrary irreducible SU(2) representations in the regularization of the operator, in contrast to the original definition where only the fundamental representation is taken. This leads to a quantization ambiguity and to a family of operators with the same classical limit. We calculate the action of the Euclidean part of the generalized Hamiltonian constraint on trivalent states, using the graphical notation of Temperley-Lieb recoupling theory. We discuss the relation between this generalization of the Hamiltonian constraint and crossing symmetry.Comment: 35 pp, 20 eps figures; minor corrections, references added; version to appear in Class. Quant. Gra

    Group Field Theory: An overview

    Full text link
    We give a brief overview of the properties of a higher dimensional generalization of matrix model which arises naturally in the context of a background independent approach to quantum gravity, the so called group field theory. We show that this theory leads to a natural proposal for the physical scalar product of quantum gravity. We also show in which sense this theory provides a third quantization point of view on quantum gravity.Comment: 10 page

    Photons from quantized electric flux representations

    Get PDF
    The quantum theory of U(1) connections admits a diffeomorphism invariant representation in which the electric flux through any surface is quantized. This representation is the analog of the representation of quantum SU(2) theory used in loop quantum gravity. We investigate the relation between this representation, in which the basic excitations are `polymer-like', and the Fock representation, in which the basic excitations are wave-like photons. We show that normalizable states in the Fock space are associated with `distributional' states in the quantized electric flux representation. This work is motivated by the question of how wave-like gravitons in linearised gravity arise from polymer-like states in non-perturbative loop quantum gravity.Comment: 22 pages, no figure

    Dynamical non-axisymmetric instabilities in rotating relativistic stars

    Full text link
    We present new results on dynamical instabilities in rapidly rotating neutron-stars. In particular, using numerical simulations in full General Relativity, we analyse the effects that the stellar compactness has on the threshold for the onset of the dynamical bar-mode instability, as well as on the appearance of other dynamical instabilities. By using an extrapolation technique developed and tested in our previous study [1], we explicitly determine the threshold for a wide range of compactnesses using four sequences of models of constant baryonic mass comprising a total of 59 stellar models. Our calculation of the threshold is in good agreement with the Newtonian prediction and improves the previous post-Newtonian estimates. In addition, we find that for stars with sufficiently large mass and compactness, the m=3 deformation is the fastest growing one. For all of the models considered, the non-axisymmetric instability is suppressed on a dynamical timescale with an m=1 deformation dominating the final stages of the instability. These results, together with those presented in [1], suggest that an m=1 deformation represents a general and late-time feature of non-axisymmetric dynamical instabilities both in full General Relativity and in Newtonian gravity.Comment: To appear on CQG, NFNR special issue. 16 pages, 5 color figures, movies from http://www.fis.unipr.it/numrel/BarMode/ResearchBarMode.htm

    Exact and semiclassical approach to a class of singular integral operators arising in fluid mechanics and quantum field theory

    Full text link
    A class of singular integral operators, encompassing two physically relevant cases arising in perturbative QCD and in classical fluid dynamics, is presented and analyzed. It is shown that three special values of the parameters allow for an exact eigenfunction expansion; these can be associated to Riemannian symmetric spaces of rank one with positive, negative or vanishing curvature. For all other cases an accurate semiclassical approximation is derived, based on the identification of the operators with a peculiar Schroedinger-like operator.Comment: 12 pages, 1 figure, amslatex, bibtex (added missing label eq.11

    Specific heat of Ce_{0.8}La_{0.2}Al_{3} in magnetic fields: a test of the anisotropic Kondo picture

    Full text link
    The specific heat C of Ce_{0.8}La_{0.2}Al_{3} has been measured as a function of temperature T in magnetic fields up to 14 T. A large peak in C at 2.3 K has recently been ascribed to an anisotropic Kondo effect in this compound. A 14-T field depresses the temperature of the peak by only 0.2 K, but strongly reduces its height. The corresponding peak in C/T shifts from 2.1 K at zero field to 1.7 K at 14 T. The extrapolated specific heat coefficient C/T(T->0) increases with field over the range studied. We show that these trends are inconsistent with the anisotropic Kondo model.Comment: 4 pages, 5 figures, ReVTeX + eps

    Quantum states of elementary three-geometry

    Get PDF
    We introduce a quantum volume operator KK in three--dimensional Quantum Gravity by taking into account a symmetrical coupling scheme of three SU(2) angular momenta. The spectrum of KK is discrete and defines a complete set of eigenvectors which is alternative with respect to the complete sets employed when the usual binary coupling schemes of angular momenta are considered. Each of these states, that we call quantum bubbles, represents an interference of extended configurations which provides a rigorous meaning to the heuristic notion of quantum tetrahedron. We study the generalized recoupling coefficients connecting the symmetrical and the binary basis vectors, and provide an explicit recursive solution for such coefficients by analyzing also its asymptotic limit.Comment: 15 pages, LaTe

    Background independent quantizations: the scalar field II

    Get PDF
    We are concerned with the issue of quantization of a scalar field in a diffeomorphism invariant manner. We apply the method used in Loop Quantum Gravity. It relies on the specific choice of scalar field variables referred to as the polymer variables. The quantization, in our formulation, amounts to introducing the `quantum' polymer *-star algebra and looking for positive linear functionals, called states. Assumed in our paper homeomorphism invariance allows to derive the complete class of the states. They are determined by the homeomorphism invariant states defined on the CW-complex *-algebra. The corresponding GNS representations of the polymer *-algebra and their self-adjoint extensions are derived, the equivalence classes are found and invariant subspaces characterized. In the preceding letter (the part I) we outlined those results. Here, we present the technical details.Comment: 51 pages, LaTeX, no figures, revised versio
    corecore