2,264 research outputs found
Chiral symmetry breaking at large N_c
We present numerical evidence for the hypothesis that, in the planar limit,
four dimensional Euclidean Yang-Mills theory on a finite symmetrical four-torus
breaks chiral symmetry spontaneously when the length of the sides l is larger
than a critical value l_c with a bilinear condensate whose value is independent
of l. Therefore spontaneous symmetry breaking occurs at finite volume and
infinite N_c reduction holds for the chiral condensate.Comment: 43 pages, 16 figures, 1 table, more typos correcte
Chiral Anomaly and Index Theorem on a finite lattice
The condition for a lattice Dirac operator D to reproduce correct chiral
anomaly at each site of a finite lattice for smooth background gauge fields is
that D possesses exact zero modes satisfying the Atiyah-Singer index theorem.
This is also the necessary condition for D to have correct fermion determinant
(ratio) which plays the important role of incorporating dynamical fermions in
the functional integral.Comment: LATTICE99(chiral fermion), 3 pages, Latex, espcrc2.st
The overlap lattice Dirac operator and dynamical fermions
I show how to avoid a two level nested conjugate gradient procedure in the
context of Hybrid Monte Carlo with the overlap fermionic action. The resulting
procedure is quite similar to Hybrid Monte Carlo with domain wall fermions, but
is more flexible and therefore has some potential worth exploring.Comment: Further expanded version. 12 pages, plain Te
Topological Phases in Neuberger-Dirac operator
The response of the Neuberger-Dirac fermion operator D=\Id + V in the
topologically nontrivial background gauge field depends on the negative mass
parameter in the Wilson-Dirac fermion operator which enters
through the unitary operator . We classify
the topological phases of by comparing its index to the topological charge
of the smooth background gauge field. An exact discrete symmetry in the
topological phase diagram is proved for any gauge configurations. A formula for
the index of D in each topological phase is derived by obtaining the total
chiral charge of the zero modes in the exact solution of the free fermion
propagator.Comment: 27 pages, Latex, 3 figures, appendix A has been revise
Noncompact chiral U(1) gauge theories on the lattice
A new, adiabatic phase choice is adopted for the overlap in the case of an
infinite volume, noncompact abelian chiral gauge theory. This gauge choice
obeys the same symmetries as the Brillouin-Wigner (BW) phase choice, and, in
addition, produces a Wess-Zumino functional that is linear in the gauge
variables on the lattice. As a result, there are no gauge violations on the
trivial orbit in all theories, consistent and covariant anomalies are simply
related and Berry's curvature now appears as a Schwinger term. The adiabatic
phase choice can be further improved to produce a perfect phase choice, with a
lattice Wess-Zumino functional that is just as simple as the one in continuum.
When perturbative anomalies cancel, gauge invariance in the fermionic sector is
fully restored. The lattice effective action describing an anomalous abelian
gauge theory has an explicit form, close to one analyzed in the past in a
perturbative continuum framework.Comment: 35 pages, one figure, plain TeX; minor typos corrected; to appear in
PR
Proposal for the numerical solution of planar QCD
Using quenched reduction, we propose a method for the numerical calculation
of meson correlation functions in the planar limit of QCD. General features of
the approach are outlined, and an example is given in the context of
two-dimensional QCD.Comment: 31 pages, 10 figures, uses axodraw.sty, To appear in Physical Review
Improving meson two-point functions by low-mode averaging
Some meson correlation functions have a large contribution from the low lying
eigenmodes of the Dirac operator. The contribution of these eigenmodes can be
averaged over all positions of the source. This can improve the signal in these
channels significantly. We test the method for meson two-point functions.Comment: Talk given at Lattice2004(spectrum), Fermilab, June 21-26, 200
A study of chiral symmetry in quenched QCD using the Overlap-Dirac operator
We compute fermionic observables relevant to the study of chiral symmetry in
quenched QCD using the Overlap-Dirac operator for a wide range of the fermion
mass. We use analytical results to disentangle the contribution from exact zero
modes and simplify our numerical computations. Details concerning the numerical
implementation of the Overlap-Dirac operator are presented.Comment: 24 pages revtex with 5 postscript figures included by eps
Bounds on the Wilson Dirac Operator
New exact upper and lower bounds are derived on the spectrum of the square of
the hermitian Wilson Dirac operator. It is hoped that the derivations and the
results will be of help in the search for ways to reduce the cost of
simulations using the overlap Dirac operator. The bounds also apply to the
Wilson Dirac operator in odd dimensions and are therefore relevant to domain
wall fermions as well.Comment: 16 pages, TeX, 3 eps figures, small corrections and improvement
Energy minimization using Sobolev gradients: application to phase separation and ordering
A common problem in physics and engineering is the calculation of the minima
of energy functionals. The theory of Sobolev gradients provides an efficient
method for seeking the critical points of such a functional. We apply the
method to functionals describing coarse-grained Ginzburg-Landau models commonly
used in pattern formation and ordering processes.Comment: To appear J. Computational Physic
- …