5,891 research outputs found

    Microscopic Enhancement of Heavy-Element Production

    Get PDF
    Realistic fusion barriers are calculated in a macroscopic-microscopic model for several soft-fusion heavy-ion reactions leading to heavy and superheavy elements. The results obtained in such a realistic picture are very different from those obtained in a purely macroscopic model. For reactions on 208:Pb targets, shell effects in the entrance channel result in fusion-barrier energies at the touching point that are only a few MeV higher than the ground state for compound systems near Z = 110. The entrance-channel fragment-shell effects remain far inside the touching point, almost to configurations only slightly more elongated than the ground-state configuration, where the fusion barrier has risen to about 10 MeV above the ground-state energy. Calculated single-particle level diagrams show that few level crossings occur until the peak in the fusion barrier very close to the ground-state shape is reached, which indicates that dissipation is negligible until very late in the fusion process. Whereas the fission valley in a macroscopic picture is several tens of MeV lower in energy than is the fusion valley, we find in the macroscopic-microscopic picture that the fission valley is only about 5 MeV lower than the fusion valley for soft-fusion reactions leading to compound systems near Z = 110. These results show that no significant ``extra-extra-push'' energy is needed to bring the system inside the fission saddle point and that the typical reaction energies for maximum cross section in heavy-element synthesis correspond to only a few MeV above the maximum in the fusion barrier.Comment: 7 pages. LaTeX. Submitted to Zeitschrift fur Physik A. 5 figures not included here. Complete preprint, including device-independent (dvi), PostScript, and LaTeX versions of the text, plus PostScript files of the figures, available at http://t2.lanl.gov/publications/publications.html or at ftp://t2.lanl.gov/pub/publications/mehe

    Shape transition and oblate-prolate coexistence in N=Z fpg-shell nuclei

    Full text link
    Nuclear shape transition and oblate-prolate coexistence in N=ZN=Z nuclei are investigated within the configuration space (2p3/22p_{3/2}, 1f5/21f_{5/2}, 2p1/22p_{1/2}, and 1g9/21g_{9/2}). We perform shell model calculations for 60^{60}Zn, 64^{64}Ge, and 68^{68}Se and constrained Hartree-Fock (CHF) calculations for 60^{60}Zn, 64^{64}Ge, 68^{68}Se, and 72^{72}Kr, employing an effective pairing plus quadrupole residual interaction with monopole interactions. The shell model calculations reproduce well the experimental energy levels of these nuclei. From the analysis of potential energy surface in the CHF calculations, we found shape transition from prolate to oblate deformation in these N=ZN=Z nuclei and oblate-prolate coexistence at 68^{68}Se. The ground state of 68^{68}Se has oblate shape, while the shape of 60^{60}Zn and 64^{64}Ge are prolate. It is shown that the isovector matrix elements between f5/2f_{5/2} and p1/2p_{1/2} orbits cause the oblate deformation for 68^{68}Se, and four-particle four-hole (4p−4h4p-4h) excitations are important for the oblate configuration.Comment: 6 pages, 5 figures, accepted for publication in Phys. Rev.

    Momentum-resolved study of the saturation intensity in multiple ionization

    Full text link
    We present a momentum-resolved study of strong field multiple ionization of ionic targets. Using a deconvolution method we are able to reconstruct the electron momenta from the ion momentum distributions after multiple ionization up to four sequential ionization steps. This technique allows an accurate determination of the saturation intensity as well as of the electron release times during the laser pulse. The measured results are discussed in comparison to typically used models of over-the-barrier ionization and tunnel ionization

    Uncertainties In Direct Neutron Capture Calculations Due To Nuclear Structure Models

    Get PDF
    The prediction of cross sections for nuclei far off stability is crucial in the field of nuclear astrophysics. For spherical nuclei close to the dripline the statistical model (Hauser-Feshbach) approach is not applicable and direct contributions may dominate the cross sections. For neutron-rich, even-even Sn targets, we compare the resulting neutron capture cross sections when consistently taking the input for the direct capture calculations from three different microscopic models. The results underline the sensitivity of cross sections calculated in the direct model to nuclear structure models which can lead to high uncertainties when lacking experimental information.Comment: 4 pages, using espcrc1.sty, Proc. Intl. Conf. "Nuclei in the Cosmos IV", Univ. Notre Dame 1996, Nucl. Phys. A, in press. A postscript version can also be obtained from http://quasar.physik.unibas.ch/research.htm

    Composite Fermions in Negative Effective Magnetic Field: A Monte-Carlo Study

    Get PDF
    The method of Jain and Kamilla [PRB {\bf 55}, R4895 (1997)] allows numerical generation of composite fermion trial wavefunctions for large numbers of electrons in high magnetic fields at filling fractions of the form nu=p/(2mp+1) with m and p positive integers. In the current paper we generalize this method to the case where the composite fermions are in an effective (mean) field with opposite sign from the actual physical field, i.e. when p is negative. We examine both the ground state energies and the low energy neutral excitation spectra of these states. Using particle-hole symmetry we can confirm the correctness of our method by comparing results for the series m=1 with p>0 (previously calculated by others) to our results for the conjugate series m=1 with p <0. Finally, we present similar results for ground state energies and low energy neutral excitations for the states with m=2 and p <0 which were not previously addressable, comparing our results to the m=1 case and the p > 0, m=2 cases.Comment: 11 page

    Politieke geletterdheid in ’n demokratiese Suid-Afrika

    Get PDF
    Political literacy in a democratic South Africa In a democracy every enfranchised citizen has an equal say in government, differences are resolved through debate and persuasion and the citizen must have the knowledge to participate in government and to debate differences. When a child is educated in political literacy, a positive contribution to democracy is possible. Compulsory political literacy programmes in schools can prepare the broad masses in South Africa for participation in a democratically elected government
    • 

    corecore