228 research outputs found

    Efficient third harmonic generation in photonic nanowires

    No full text
    In a photonic nanowire the strong optical confinement allows for the phase matching of nonlinear interactions that would not normally be phase matched, while the large longitudinal component of the electric field serves to further enhance the effective nonlinearity. Thus such waveguides are good choices for studying nonlinear effects such as third harmonic generation. In this paper we analyse third harmonic generation analytically and present the criteria for optimal harmonic generation. In addition we analyse the inverse process of 1/3 harmonic generation and show that efficient parametric amplifiers can be made which would be a high brightness source of entangled photons for producing GHZ states

    Primitiver neuroektodermaler Tumor im Hoden: Molekulare Analyse und Diskussion der Entstehung

    Get PDF
    Zusammenfassung: Wir beschreiben einen testikulären primitiven neuroektodermalen Tumor (PNET) mit intratubulärer Keimzellneoplasie des angrenzenden Hodenparenchyms bei einem 25-jährigen Patienten. Testikuläre PNET sind selten. Ihre Entstehung wird auf eine maligne somatische Transformation in einem testikulären Keimzelltumor zurückgeführt. Morphologisch und molekularpathologisch ähneln diese Tumoren kindlichen zentralen PNET, die keine Rearrangierung des EWS-Gens auf Chromosom22 aufweisen. Auch im hier beschriebenen Fall konnte keine Translokation nachgewiesen werde

    On the Hydrogen Atom via Wigner-Heisenberg Algebra

    Full text link
    We extend the usual Kustaanheimo-Stiefel 4D→3D4D\to 3D mapping to study and discuss a constrained super-Wigner oscillator in four dimensions. We show that the physical hydrogen atom is the system that emerges in the bosonic sector of the mapped super 3D system.Comment: 14 pages, no figure. This work was initiated in collaboration with Jambunatha Jayaraman (In memory), whose advises and encouragement were fundamental. http://www.cbpf.b

    Nonlinear polarization bistability in optical nanowires

    Get PDF
    Using the full vectorial nonlinear Schrödinger equations that describe nonlinear processes in isotropic optical nanowires, we show that there exist structural anisotropic nonlinearities that lead to unstable polarization states that exhibit periodic bistable behavior. We analyze and solve the nonlinear equations for continuous waves by means of a Lagrangian formulation and show that the system has bistable states and also kink solitons that are limiting forms of the bistable states.Wen Qi Zhang, M. A. Lohe, Tanya M. Monro, and Shahraam Afshar V

    Bogomol'nyi Equations of Maxwell-Chern-Simons vortices from a generalized Abelian Higgs Model

    Full text link
    We consider a generalization of the abelian Higgs model with a Chern-Simons term by modifying two terms of the usual Lagrangian. We multiply a dielectric function with the Maxwell kinetic energy term and incorporate nonminimal interaction by considering generalized covariant derivative. We show that for a particular choice of the dielectric function this model admits both topological as well as nontopological charged vortices satisfying Bogomol'nyi bound for which the magnetic flux, charge and angular momentum are not quantized. However the energy for the topolgical vortices is quantized and in each sector these topological vortex solutions are infinitely degenerate. In the nonrelativistic limit, this model admits static self-dual soliton solutions with nonzero finite energy configuration. For the whole class of dielectric function for which the nontopological vortices exists in the relativistic theory, the charge density satisfies the same Liouville equation in the nonrelativistic limit.Comment: 30 pages(4 figures not included), RevTeX, IP/BBSR/93-6

    Some Recent Developments on Kink Collisions and Related Topics

    Full text link
    We review recent works on modeling of dynamics of kinks in 1+1 dimensional Ď•4\phi^4 theory and other related models, like sine-Gordon model or Ď•6\phi^6 theory. We discuss how the spectral structure of small perturbations can affect the dynamics of non-perturbative states, such as kinks or oscillons. We describe different mechanisms, which may lead to the occurrence of the resonant structure in the kink-antikink collisions. We explain the origin of the radiation pressure mechanism, in particular, the appearance of the negative radiation pressure in the Ď•4\phi^4 and Ď•6\phi^6 models. We also show that the process of production of the kink-antikink pairs, induced by radiation is chaotic.Comment: 26 pages, 9 figures; invited chapter to "A dynamical perspective on the {\phi}4 model: Past, present and future", Eds. P.G. Kevrekidis and J. Cuevas-Maraver; Springer book class with svmult.cls include

    Interfacing External Quantum Devices to a Universal Quantum Computer

    Get PDF
    We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer

    Equivalence between free quantum particles and those in harmonic potentials and its application to instantaneous changes

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedIn quantum physics the free particle and the harmonically trapped particle are arguably the most important systems a physicist needs to know about. It is little known that, mathematically, they are one and the same. This knowledge helps us to understand either from the viewpoint of the other. Here we show that all general time-dependent solutions of the free-particle Schrodinger equation can be mapped to solutions of the Schrodinger equation for harmonic potentials, both the trapping oscillator and the inverted `oscillator'. This map is fully invertible and therefore induces an isomorphism between both types of system, they are equivalent. A composition of the map and its inverse allows us to map from one harmonic oscillator to another with a different spring constant and different center position. The map is independent of the state of the system, consisting only of a coordinate transformation and multiplication by a form factor, and can be chosen such that the state is identical in both systems at one point in time. This transition point in time can be chosen freely, the wave function of the particle evolving in time in one system before the transition point can therefore be linked up smoothly with the wave function for the other system and its future evolution after the transition point. Such a cut-and-paste procedure allows us to describe the instantaneous changes of the environment a particle finds itself in. Transitions from free to trapped systems, between harmonic traps of different spring constants or center positions, or, from harmonic binding to repulsive harmonic potentials are straightforwardly modelled. This includes some time dependent harmonic potentials. The mappings introduced here are computationally more efficient than either state-projection or harmonic oscillator propagator techniques conventionally employed when describing instantaneous (non-adiabatic) changes of a quantum particle's environmentPeer reviewe

    The self-consistent bounce: an improved nucleation rate

    Full text link
    We generalize the standard computation of homogeneous nucleation theory at zero temperature to a scenario in which the bubble shape is determined self-consistently with its quantum fluctuations. Studying two scalar models in 1+1 dimensions, we find the self-consistent bounce by employing a two-particle irreducible (2PI) effective action in imaginary time at the level of the Hartree approximation. We thus obtain an effective single bounce action which determines the rate exponent. We use collective coordinates to account for the translational invariance and the growth instability of the bubble and finally present a new nucleation rate prefactor. We compare the results with those obtained using the standard 1-loop approximation and show that the self-consistent rate can differ by several orders of magnitude.Comment: 28 pages, revtex, 7 eps figure
    • …
    corecore