777 research outputs found

    Separable time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    We present an improved model and theory for time-causal and time-recursive spatio-temporal receptive fields, obtained by a combination of Gaussian receptive fields over the spatial domain and first-order integrators or equivalently truncated exponential filters coupled in cascade over the temporal domain. Compared to previous spatio-temporal scale-space formulations in terms of non-enhancement of local extrema or scale invariance, these receptive fields are based on different scale-space axiomatics over time by ensuring non-creation of new local extrema or zero-crossings with increasing temporal scale. Specifically, extensions are presented about parameterizing the intermediate temporal scale levels, analysing the resulting temporal dynamics and transferring the theory to a discrete implementation in terms of recursive filters over time.Comment: 12 pages, 2 figures, 2 tables. arXiv admin note: substantial text overlap with arXiv:1404.203

    Provably scale-covariant networks from oriented quasi quadrature measures in cascade

    Full text link
    This article presents a continuous model for hierarchical networks based on a combination of mathematically derived models of receptive fields and biologically inspired computations. Based on a functional model of complex cells in terms of an oriented quasi quadrature combination of first- and second-order directional Gaussian derivatives, we couple such primitive computations in cascade over combinatorial expansions over image orientations. Scale-space properties of the computational primitives are analysed and it is shown that the resulting representation allows for provable scale and rotation covariance. A prototype application to texture analysis is developed and it is demonstrated that a simplified mean-reduced representation of the resulting QuasiQuadNet leads to promising experimental results on three texture datasets.Comment: 12 pages, 3 figures, 1 tabl

    Scale-Space: A Framework for Handling Image Structures at Multiple Scales

    Get PDF
    This article gives a tutorial overview of essential components of scale-space theory --- a framework for multi-scale signal representation, which has been developed by the computer vision community to analyse and interpret real-world images by automatic methods. 1 The need for multi-scale representation of image data An inherent property of real-world objects is that they only exist as meaningful entities over In: Proc. CERN School of Computing, Egmond aan Zee, The Netherlands, 8--21 September, 1996. certain ranges of scale. A simple example is the concept of a branch of a tree, which makes sense only at a scale from, say, a few centimeters to at most a few meters, It is meaningless to discuss the tree concept at the nanometer or kilometer level. At those scales, it is more relevant to talk about the molecules that form the leaves of the tree, and the forest in which the tree grows, respectively. This fact, that objects in the world appear in different ways depending on the scale of ..

    Affine Subspace Representation for Feature Description

    Full text link
    This paper proposes a novel Affine Subspace Representation (ASR) descriptor to deal with affine distortions induced by viewpoint changes. Unlike the traditional local descriptors such as SIFT, ASR inherently encodes local information of multi-view patches, making it robust to affine distortions while maintaining a high discriminative ability. To this end, PCA is used to represent affine-warped patches as PCA-patch vectors for its compactness and efficiency. Then according to the subspace assumption, which implies that the PCA-patch vectors of various affine-warped patches of the same keypoint can be represented by a low-dimensional linear subspace, the ASR descriptor is obtained by using a simple subspace-to-point mapping. Such a linear subspace representation could accurately capture the underlying information of a keypoint (local structure) under multiple views without sacrificing its distinctiveness. To accelerate the computation of ASR descriptor, a fast approximate algorithm is proposed by moving the most computational part (ie, warp patch under various affine transformations) to an offline training stage. Experimental results show that ASR is not only better than the state-of-the-art descriptors under various image transformations, but also performs well without a dedicated affine invariant detector when dealing with viewpoint changes.Comment: To Appear in the 2014 European Conference on Computer Visio

    Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale selection

    Full text link

    Scale Space Smoothing, Image Feature Extraction and Bessel Filters

    Full text link
    The Green function of Mumford-Shah functional in the absence of discontinuities is known to be a modified Bessel function of the second kind and zero degree. Such a Bessel function is regularized here and used as a filter for feature extraction. It is demonstrated in this paper that a Bessel filter does not follow the scale space smoothing property of bounded linear filters such as Gaussian filters. The features extracted by the Bessel filter are therefore scale invariant. Edges, blobs, and junctions are features considered here to show that the extracted features remain unchanged by varying the scale of a Bessel filter. The scale invariance property of Bessel filters for edges is analytically proved here. We conjecture that Bessel filters also enjoy this scale invariance property for other kinds of features. The experimental results presente
    • …
    corecore