133 research outputs found

    An improved model of the Earth's gravitational field: GEM-T1

    Get PDF
    Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested

    Gravitational model improvement at the Goddard Space Flight Center

    Get PDF
    Major new computations of terrestrial gravitational field models were performed by the Geodynamics Branch of Goddard Space Flight Center (GSFC). This development has incorporated the present state of the art results in satellite geodesy and have relied upon a more consistent set of reference constants than was heretofore utilized in GSFC's GEM models. The solutions are complete in spherical harmonic coefficients out to degree 50 for the gravity field parameters. These models include adjustment for a subset of 66 ocean tidal coefficients for the long wavelength components of 12 major ocean tides. This tidal adjustment was made in the presence of 550 other fixed ocean tidal terms representing 32 major and minor ocean tides and the Wahr frequency dependent solid earth tidal model. In addition 5-day averaged values for Earth rotation and polar motion were derived for the time period of 1980 onward. Two types of models were computed. These are satellite only models relying exclusively on tracking data and combination models which have incorporated satellite altimetry and surface gravity data. The satellite observational data base consists of over 1100 orbital arcs of data on 31 satellites. A large percentage of these observations were provided by third generation laser stations (less than 5 cm). A calibration of the model accuracy of the GEM-T2 satellite only solution indicated that it was a significant improvement over previous models based solely upon tracking data. The rms geoid error for this field is 110 cm to degree and order 36. This is a major advancement over GEM-T1 whose errors were estimated to be 160 cm. An error propagation using the covariances of the GEM-T2 model for the TOPEX radial orbit component indicates that the rms radial errors are expected to be 12 cm. The combination solution, PGS-3337, is a preliminary effort leading to the development of GEM-T3. PGS-3337 has incorporated global sets of surface gravity data and the Seasat altimetry to produce a model complete to (50,50). A solution for the dynamic ocean topography to degree and order 10 was included as part of this adjustment

    On the possibility of measuring relativistic gravitational effects with a LAGEOS-LAGEOS II-OPTIS-mission

    Full text link
    In this paper we wish to preliminary investigate if it would be possible to use the orbital data from the proposed OPTIS mission together with those from the existing geodetic passive SLR LAGEOS and LAGEOS II satellites in order to perform precise measurements of some general relativistic gravitoelectromagnetic effects, with particular emphasis on the Lense-Thirring effect.Comment: Abridged version. 16 pages, no figures, 1 table. First results from the GGM01C Earth gravity model. GRACE data include

    Linear Paul trap design for an optical clock with Coulomb crystals

    Full text link
    We report on the design of a segmented linear Paul trap for optical clock applications using trapped ion Coulomb crystals. For an optical clock with an improved short-term stability and a fractional frequency uncertainty of 10^-18, we propose 115In+ ions sympathetically cooled by 172Yb+. We discuss the systematic frequency shifts of such a frequency standard. In particular, we elaborate on high precision calculations of the electric radiofrequency field of the ion trap using the finite element method. These calculations are used to find a scalable design with minimized excess micromotion of the ions at a level at which the corresponding second- order Doppler shift contributes less than 10^-18 to the relative uncertainty of the frequency standard

    Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota

    Get PDF
    An array of seismometers is being developed at the Sanford Underground Laboratory, the former Homestake mine, in South Dakota to study the properties of underground seismic fields and Newtonian noise, and to investigate the possible advantages of constructing a third-generation gravitational-wave detector underground. Seismic data were analyzed to characterize seismic noise and disturbances. External databases were used to identify sources of seismic waves: ocean-wave data to identify sources of oceanic microseisms, and surface wind-speed data to investigate correlations with seismic motion as a function of depth. In addition, sources of events contributing to the spectrum at higher frequencies are characterized by studying the variation of event rates over the course of a day. Long-term observations of spectral variations provide further insight into the nature of seismic sources. Seismic spectra at three different depths are compared, establishing the 4100-ft level as a world-class low seismic-noise environment.Comment: 29 pages, 16 figure

    Long-term and recent changes in sea level in the Falkland Islands

    Get PDF
    Mean sea level measurements made at Port Louis in the Falkland Islands in 1981-2, 1984 and 2009, together with values from the nearby permanent tide gauge at Port Stanley, have been compared to measurements made at Port Louis in 1842 by James Clark Ross. The long-term rate of change of sea level is estimated to have been +0.75 ± 0.35 mm/year between 1842 and the early 1980s, after correction for air pressure effects and for vertical land movement due to Glacial Isostatic Adjustment (GIA). The 2009 Port Louis data set is of particular importance due to the availability of simultaneous information from Port Stanley. The data set has been employed in two ways, by providing a short recent estimate of mean sea level itself, and by enabling the effective combination of measurements at the two sites. The rate of sea level rise observed since 1992, when the modern Stanley gauge was installed, has been larger at 2.51 ± 0.58 mm/year, after correction for air pressure and GIA. This rate compares to a value of 2.79 ± 0.42 mm/year obtained from satellite altimetry in the region over the same period. Such a relatively recent acceleration in the rate of sea level rise is consistent with findings from other locations in the southern hemisphere and globall

    Strategies for effective unmanned aerial vehicle use in geological field studies based on cognitive science principles

    Get PDF
    Field geologists are increasingly using unmanned aerial vehicles (UAVs or drones), although their use involves significant cognitive challenges for which geologists are not well trained. On the basis of surveying the user community and documenting experts’ use in the field, we identified five major problems, most of which are aligned with well-documented limits on cognitive performance. First, the images being sent from the UAV portray the landscape from multiple different view directions. Second, even with a constant view direction, the ability to move the UAV or zoom the camera lens results in rapid changes in visual scale. Third, the images from the UAVs are displayed too quickly for users, even experts, to assimilate efficiently. Fourth, it is relatively easy to get lost when flying, particularly if the user is unfamiliar with the area or with UAV use. Fifth, physical limitations on flight time are a source of stress, which renders the operator less effective. Many of the strategies currently employed by field geologists, such as postprocessing and photogrammetry, can reduce these problems. We summarize the cognitive science basis for these issues and provide some new strategies that are designed to overcome these limitations and promote more effective UAV use in the field. The goal is to make UAV-based geological interpretations in the field possible by recognizing and reducing cognitive loa

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde
    • …
    corecore