1,420 research outputs found

    Analysis of measurement errors for a superconducting phase qubit

    Full text link
    We analyze several mechanisms leading to errors in a course of measurement of a superconducting flux-biased phase qubit. Insufficiently long measurement pulse may lead to nonadiabatic transitions between qubit states ∣1>|1> and ∣0>|0>, before tunneling through a reduced barrier is supposed to distinguish the qubit states. Finite (though large) ratio of tunneling rates for these states leads to incomplete discrimination between ∣1>|1> and ∣0>|0>. Insufficiently fast energy relaxation after the tunneling of state ∣1>|1> may cause the repopulation of the quantum well in which only the state ∣0>|0> is supposed to remain. We analyze these types of measurement errors using analytical approaches as well as numerical solution of the time-dependent Schr\"{o}dinger equation.Comment: 14 pages, 14 figure

    Bound and resonance states of the nonlinear Schroedinger equation in simple model systems

    Full text link
    The stationary nonlinear Schroedinger equation, or Gross-Pitaevskii equation, is studied for the cases of a single delta potential and a delta-shell potential. These model systems allow analytical solutions, and thus provide useful insight into the features of stationary bound, scattering and resonance states of the nonlinear Schroedinger equation. For the single delta potential, the influence of the potential strength and the nonlinearity is studied as well as the transition from bound to scattering states. Furthermore, the properties of resonance states for a repulsive delta-shell potential are discussed.Comment: 19 pages, 10 figure

    Quantum Hamilton-Jacobi Theory

    Full text link
    Quantum canonical transformations have attracted interest since the beginning of quantum theory. Based on their classical analogues, one would expect them to provide a powerful quantum tool. However, the difficulty of solving a nonlinear operator partial differential equation such as the quantum Hamilton-Jacobi equation (QHJE) has hindered progress along this otherwise promising avenue. We overcome this difficulty. We show that solutions to the QHJE can be constructed by a simple prescription starting from the propagator of the associated Schroedinger equation. Our result opens the possibility of practical use of quantum Hamilton-Jacobi theory. As an application we develop a surprising relation between operator ordering and the density of paths around a semiclassical trajectory.Comment: 7 page

    Model Analysis of the ep→ep′π+π−ep \to ep'\pi^+\pi^- Electroproduction Reaction on the Proton

    Full text link
    Recent CLAS data on the pπ+π−p\pi^+\pi^- electroproduction off protons at 1.3<<W<<1.57 GeV and 0.25<<Q2Q^{2}<<0.6 GeV2^{2} have been analyzed using a meson-baryon phenomenological model. By fitting nine 1-fold differential cross section data for each WW and Q2Q^{2} bin, the charged double pion electroproduction mechanisms are identified from their manifestations in the observables. We have extracted the cross sections from amplitudes of each of the considered isobar channels as well as from their coherent sum. We also obtained non-resonant partial wave amplitudes of all contributing isobar channels which could be useful for advancing a complete coupled-channel analysis of all meson electroproduction data.Comment: Experiment Numbers: E93-006, E94-005 Group: Hall

    Search for Bc(ns)B_c(ns) via the Bc(ns)→Bc(ms)π+π−B_c(ns)\to B_c(ms)\pi^+\pi^- transition at LHCb and Z0Z_0 factory

    Full text link
    It is interesting to study the characteristics of the whole family of BcB_c which contains two different heavy flavors. LHC and the proposed Z0Z^0 factory provide an opportunity because a large database on the BcB_c family will be achieved. BcB_c and its excited states can be identified via their decay modes. As suggested by experimentalists, Bc∗(ns)→Bc+γB_c^*(ns)\to B_c+\gamma is not easy to be clearly measured, instead, the trajectories of π+\pi^+ and π−\pi^- occurring in the decay of Bc(ns)→Bc(ms)+π+π−B_c(ns)\to B_c(ms)+\pi^+\pi^- (n>mn>m) can be unambiguously identified, thus the measurement seems easier and more reliable, therefore this mode is more favorable at early running stage of LHCb and the proposed Z0Z^0 factory. In this work, we calculate the rate of Bc(ns)→Bc(ms)+π+π−B_c(ns)\to B_c(ms)+\pi^+\pi^- in terms of the QCD multipole-expansion and the numerical results indicate that the experimental measurements with the luminosity of LHC and Z0Z^0 factory are feasible.Comment: 12 pages, 1 figures and 4 tables, acceptted by SCIENCE CHINA Physics, Mechanics & Astronomy (Science in China Series G

    Flavor and Charge Symmetry in the Parton Distributions of the Nucleon

    Get PDF
    Recent calculations of charge symmetry violation(CSV) in the valence quark distributions of the nucleon have revealed that the dominant symmetry breaking contribution comes from the mass associated with the spectator quark system.Assuming that the change in the spectator mass can be treated perturbatively, we derive a model independent expression for the shift in the parton distributions of the nucleon. This result is used to derive a relation between the charge and flavor asymmetric contributions to the valence quark distributions in the proton, and to calculate CSV contributions to the nucleon sea. The CSV contribution to the Gottfried sum rule is also estimated, and found to be small

    Nucleon spin-flavor structure in SU(3) breaking chiral quark model

    Get PDF
    The SU(3) symmetric chiral quark model, which describes interactions between quarks, gluons and the Goldstone bosons, explains reasonably well many aspects of the flavor and spin structure of the proton, except for the values of f3/f8f_3/f_8 and Δ3/Δ8\Delta_3/\Delta_8. Introducing the SU(3)-breaking effect suggested by the mass difference between the strange and nonstrange quarks, we find that this discrepancy can be removed and better overall agreement obtained.Comment: 18 pages, Latex, 4 tables. Phys. Rev. D (in press, submitted/revised in June/Nov 1996

    Effective s- and p-Wave Contact Interactions in Trapped Degenerate Fermi Gases

    Full text link
    The structure and stability of dilute degenerate Fermi gases trapped in an external potential is discussed with special emphasis on the influence of s- and p-wave interactions. In a first step an Effective Contact Interaction for all partial waves is derived, which reproduces the energy spectrum of the full potential within a mean-field model space. Using the s- and p-wave part the energy density of the multi-component Fermi gas is calculated in Thomas-Fermi approximation. On this basis the stability of the one- and two-component Fermi gas against mean-field induced collapse is investigated. Explicit stability conditions in terms of density and total particle number are given. For the single-component system attractive p-wave interactions limit the density of the gas. In the two-component case a subtle competition of s- and p-wave interactions occurs and gives rise to a rich variety of phenomena. A repulsive p-wave part, for example, can stabilize a two-component system that would otherwise collapse due to an attractive s-wave interaction. It is concluded that the p-wave interaction may have important influence on the structure of degenerate Fermi gases and should not be discarded from the outset.Comment: 18 pages, 11 figures (using RevTEX4

    Heavy Quarkonia in Quark-Gluon Plasma

    Full text link
    Using the color-singlet free energy F_1 and total internal energy U_1 obtained by Kaczmarek et al. for a static quark Q and an antiquark Qbar in quenched QCD, we study the binding energies and wave functions of heavy quarkonia in a quark-gluon plasma. By minimizing the grand potential in a simplified schematic model, we find that the proper color-singlet Q-Qbar potential can be obtained from the total internal energy U_1 by subtracting the gluon internal energy contributions. We carry out this subtraction in the local energy-density approximation in which the gluon energy density can be related to the local gluon pressure by the quark-gluon plasma equation of state. We find in this approximation that the proper color-singlet Q-Qbar potential is approximately F_1 for T ~ T_c and it changes to (3/4)F_1+(1/4)U_1 at high temperatures. In this potential model, the J/psi is weakly bound above the phase transition temperature T_c, and it dissociates spontaneously above 1.62 T_c, while chi_c and psi' are unbound in the quark-gluon plasma. The bottomium states Upsilon, chi_b and Upsilon' are bound in the quark-gluon plasma and they dissociate at 4.10 T_c, 1.18 T_c, and 1.38 T_c respectively. For comparison, we evaluate the heavy quarkonium binding energies also in other models using the free energy F_1 or the total internal energy U_1 as the Q-Qbar potential. The comparison shows that the model with the new Q-Qbar potential proposed in this manuscript gives dissociation temperatures that agree best with those from spectral function analyses. We evaluate the cross section for sigma(g+J/psi->c+cbar) and its inverse process, in order to determine the J/psi dissociation width and the rate of J/psi production by recombining c and cbar in the quark gluon plasma.Comment: 30 pages, in Late

    Chiral Transparency

    Get PDF
    Color transparency is the vanishing of initial and final state interactions, predicted by QCD to occur in high momentum transfer quasielastic nuclear reactions. For specific reactions involving nucleons, the initial and final state interactions are expected to be dominated by exchanges of pions. We argue that these interactions are also suppressed in high momentum transfer nuclear quasielastic reactions; this is ``chiral transparency". We show that studies of the e3He→e′Δ++nne ^3He \to e'\Delta^{++} nn reaction could reveal the influence of chiral transparency.Comment: 20 pages, three figures available by fax from [email protected]; submitted to Phys. Rev.
    • …
    corecore