43 research outputs found
Radiation chemistry of solid-state carbohydrates using EMR
We review our research of the past decade towards identification of radiation-induced radicals in solid state sugars and sugar phosphates. Detailed models of the radical structures are obtained by combining EPR and ENDOR experiments with DFT calculations of g and proton HF tensors, with agreement in their anisotropy serving as most important criterion. Symmetry-related and Schonland ambiguities, which may hamper such identification, are reviewed. Thermally induced transformations of initial radiation damage into more stable radicals can also be monitored in the EPR (and ENDOR) experiments and in principle provide information on stable radical formation mechanisms. Thermal annealing experi-ments reveal, however, that radical recombination and/or diamagnetic radiation damage is also quite important. Analysis strategies are illustrated with research on sucrose. Results on dipotassium glucose-1-phosphate and trehalose dihydrate, fructose and sorbose are also briefly discussed. Our study demonstrates that radiation damage is strongly regio-selective and that certain general principles govern the stable radical formation
Chlorinated and brominated polycyclic aromatic hydrocarbons in ambient air: seasonal variation, profiles, potential sources, and size distribution
Chlorinated and brominated polycyclic aromatic hydrocarbons (ClPAHs and BrPAHs, respectively) are a new derivative group of PAHs. These halogenated PAHs (Halo-PAHs) have been reported to be carcinogenic and are considered emerging persistent organic pollutants. Gaining a clear understanding of the distribution and behavior of these ubiquitous organic pollutants is essential for the control and mitigation of their emission into the environment. However, research into the characteristics of Halo-PAHs in the atmosphere has been somewhat limited. This review paper thus aims to provide an overview of the seasonal patterns, profiles, potential sources, and particle-size distributions of atmospheric ClPAHs and BrPAHs with 3-5 rings. Most previous studies have focused on particulate Halo-PAHs and reported that their levels are higher during the cold season than during the warm season, with this seasonal variation more apparent for ClPAHs than for BrPAHs. In terms of their phase distribution, ClPAHs and BrPAHs share a similar trend, with their gaseous concentrations highest in summer and lowest in winter and their particulate concentrations exhibiting the opposite trend. Halo-PAH profiles have been shown to differ between sampling locations, possibly reflecting differences in the potential sources present at these sites, e.g., coal burning, traffic emissions, and industrial activity. The majority of Halo-PAHs tend to accumulate as ultrafine particles with an aerodynamic diameter of less than 1.0 mu m. Overall, a detailed understanding of the characteristics of Halo-PAHs in the atmosphere has yet to be achieved; hence, further research on atmospheric Halo-PAHs is necessary
Forest restoration by burning and gap cutting of voluntary set-asides yield distinct immediate effects on saproxylic beetles
Today, the importance of restoring natural forest disturbance regimes and habitat structures for biodiversity is widely recognized. We evaluated the immediate effects of two restoration methods on wood-inhabiting (saproxylic) beetles in boreal forest voluntary set-asides. We used a before-after control-impact experimental set-up in 15 set-asides; each assigned to one of three treatments: (1) restoration burning, (2) gap cutting and (3) no-treatment reference stands. Before treatment, abundance, species richness and assemblage composition of trapped beetles did not differ significantly among treatments. Burning resulted in a significant change in assemblage composition and increased species richness and abundance compared to reference stands. As predicted, saproxylic species known to be fire favoured increased dramatically after burning. The immediate response shows that, initially, fire favoured species are attracted from the surrounding landscape and not produced on site. Gap cutting increased the abundance of cambium consumers but had no significant effect on total species richness or assemblage composition of saproxylic beetles. The stronger effect of burning compared to gap cutting on saproxylic assemblages is probably due to the very specific conditions created by fires that attracts many disturbance-dependent species, but that at the same time disfavour some disturbance-sensitive species. By contrast, gap cutting maintained assemblage composition, increased abundances and is likely to increase species richness in the years to follow, due to elevated level of dead wood. The restoration methods applied in this study may prove particularly useful, partly because of positive effect on saproxylic beetles, but also due to the cost-efficiency of the measures; the voluntary set-asides were already established and the restoration costs fully covered by revenue from the extracted timber
Simulation of harvester productivity in selective and boom-corridor thinning of young forests
Forest management practices may change in the future, due to increases in the extraction of forest fuel in first thinnings. Simulation models can be used to aid in developing new harvesting systems. We used such an approach to assess the productivity of innovative systems in various thinnings of young stands with wide ranges of mean breast height diameter (1.5â15.6 cm), stems per hectare (1000â19,100), and mean height (2.3â14.6 m).
The results show that selective multiple-tree-handling increases productivity by 20â46% compared to single-tree-handling. If the trees are cut in boom-corridors (10Ă1 or 2 m strips between strip roads), productivity increases up to 41%, compared to selective multiple-tree-handling. Moreover, if the trees are felled using area-based felling systems, productivity increases by 33â199%, compared to selective multiple-tree-handling. For any given harvesting intensity, productivity increased the most in the densest stands with small trees.
The results were used to derive time consumption functions. Comparisons with time study results suggest that our simulation model successfully mimicked productivity in real-life forest operations, hence the model and derived functions should be useful for cost calculations and evaluating forest management scenarios in diverse stands