17,612 research outputs found

    Weyl points and topological nodal superfluids in a face-centered cubic optical lattice

    Full text link
    We point out that a face-centered cubic (FCC) optical lattice, which can be realised by a simple scheme using three lasers, provides one a highly controllable platform for creating Weyl points and topological nodal superfluids in ultracold atoms. In non-interacting systems, Weyl points automatically arise in the Floquet band structure when shaking such FCC lattices, and sophisticated design of the tunnelling is not required. More interestingly, in the presence of attractive interaction between two hyperfine spin states, which experience the same shaken FCC lattice, a three-dimensional topological nodal superfluid emerges, and Weyl points show up as the gapless points in the quasiparticle spectrum. One could either create a double Weyl point of charge 2, or split it to two Weyl points of charge 1, which can be moved in the momentum space by tuning the interactions. Correspondingly, the Fermi arcs at the surface may be linked with each other or separated as individual ones.Comment: 5 pages, 2 figures in the main text; 2 pages, 2 figures in the supplemental materia

    Log-aesthetic Curves as Similarity Geometric Analogue of Euler's Elasticae

    Full text link
    In this paper we consider the log-aesthetic curves and their generalization which are used in CAGD. We consider those curves under similarity geometry and characterize them as stationary integrable flow on plane curves which is governed by the Burgers equation. We propose a variational formulation of those curves whose Euler-Lagrange equation yields the stationary Burgers equation. Our result suggests that the log-aesthetic curves and their generalization can be regarded as the similarity geometric analogue of Euler's elasticae

    General considerations of matter coupling with the self-dual connection

    Get PDF
    It has been shown for low-spin fields that the use of only the self-dual part of the connection as basic variable does not lead to extra conditions or inconsistencies. We study whether this is true for more general chiral action. We generalize the chiral gravitational action, and assume that half-integer spin fields are coupled with torsion linearly. The equation for torsion is solved and substituted back into the generalized chiral action, giving four-fermion contact terms. If these contact terms are complex, the imaginary part will give rise to extra conditions for the gravitational and matter field equations. We study the four-fermion contact terms taking spin-1/2 and spin-3/2 fields as examples.Comment: 16 pages, late

    Will Nonlinear Peculiar Velocity and Inhomogeneous Reionization Spoil 21cm Cosmology from the Epoch of Reionization?

    Full text link
    The 21cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization ( 80% ionized).Comment: 2 figures, matches published PRL versio
    • …
    corecore