5,506 research outputs found

    Adaptive cancelation of self-generated sensory signals in a whisking robot

    Get PDF
    Sensory signals are often caused by one's own active movements. This raises a problem of discriminating between self-generated sensory signals and signals generated by the external world. Such discrimination is of general importance for robotic systems, where operational robustness is dependent on the correct interpretation of sensory signals. Here, we investigate this problem in the context of a whiskered robot. The whisker sensory signal comprises two components: one due to contact with an object (externally generated) and another due to active movement of the whisker (self-generated). We propose a solution to this discrimination problem based on adaptive noise cancelation, where the robot learns to predict the sensory consequences of its own movements using an adaptive filter. The filter inputs (copy of motor commands) are transformed by Laguerre functions instead of the often-used tapped-delay line, which reduces model order and, therefore, computational complexity. Results from a contact-detection task demonstrate that false positives are significantly reduced using the proposed scheme

    Preregistration house officers in general practice: review of evidence

    Get PDF
    OBJECTIVES: To examine the strengths and weaknesses of the national and local schemes for preregistration house officers to spend four months in general practice, to identify any added value from such placements, and to examine the impact on career choices. DESIGN: Review of all studies that reported on placements of preregistration house officers in general practice. SETTING: 19 accounts of preregistration house officers’ experience in general practice, ranging from single case reports to a national evaluation study, in a variety of locations in Scotland and England. PARTICIPANTS: Views of 180 preregistration house officers, 45 general practitioner trainers, and 105 consultant trainers. MAIN OUTCOME MEASURES: Main findings or themes weighted according to number of studies reporting them and weighted for sample size. RESULTS: The studies were unanimous about the educational benefits of the placements. The additional learning included communication skills, social and psychological factors in illness, patient centred consultations, broadening of knowledge base, and dealing with uncertainty about diagnosis and referral. CONCLUSIONS: Despite the reported benefits and recommendations of the scheme, it is not expanding. General practitioner trainers reported additional supervision that was unremunerated. The reforms of the senior house officer grade may resolve this problem by offering the placements to senior house officers, who require less supervision

    A future of living machines? International trends and prospects in biomimetic and biohybrid systems

    Get PDF
    Research in the fields of biomimetic and biohybrid systems is developing at an accelerating rate. Biomimetics can be understood as the development of new technologies using principles abstracted from the study of biological systems, however, biomimetics can also be viewed from an alternate perspective as an important methodology for improving our understanding of the world we live in and of ourselves as biological organisms. A biohybrid entity comprises at least one artificial (engineered) component combined with a biological one. With technologies such as microscale mobile computing, prosthetics and implants, humankind is moving towards a more biohybrid future in which biomimetics helps us to engineer biocompatible technologies. This paper reviews recent progress in the development of biomimetic and biohybrid systems focusing particularly on technologies that emulate living organisms—living machines. Based on our recent bibliographic analysis [1] we examine how biomimetics is already creating life-like robots and identify some key unresolved challenges that constitute bottlenecks for the field. Drawing on our recent research in biomimetic mammalian robots, including humanoids, we review the future prospects for such machines and consider some of their likely impacts on society, including the existential risk of creating artifacts with significant autonomy that could come to match or exceed humankind in intelligence. We conclude that living machines are more likely to be a benefit than a threat but that we should also ensure that progress in biomimetics and biohybrid systems is made with broad societal consent. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    The role of orienting in vibrissal touch sensing

    Get PDF
    Rodents, such as rats and mice, are strongly tactile animals who explore the environment with their long mobile facial whiskers, or macrovibrissae, and orient to explore objects further with their shorter, more densely packed, microvibrissae. Although whisker motion (whisking) has been extensively studied, less is known about how rodents orient their vibrissal system to investigate unexpected stimuli. We describe two studies that address this question. In the first we seek to characterize how adult rats orient toward unexpected macrovibrissal contacts with objects and examine the microvibrissal exploration behavior following such contacts. We show that rats orient to the nearest macrovibrissal contact on an unexpected object, progressively homing in on the nearest contact point on the object in each subsequent whisk. Following contact, rats “dab” against the object with their microvibrissae at an average rate of approximately 8 Hz, which suggests synchronization of microvibrissal dabbing with macrovibrissal motion, and an amplitude of 5 mm. In study two, we examine the role of orienting to tactile contacts in developing rat pups for maintaining aggregations (huddles). We show that young pups are able to orient to contacts with nearby conspecifics before their eyes open implying an important role for the macrovibrissae, which are present from birth, in maintaining contact with conspecifics. Overall, these data suggest that orienting to tactile cues, detected by the vibrissal system, plays a crucial role throughout the life of a rat

    The Stripe 82 1-2 GHz Very Large Array Snapshot Survey: Multiwavelength Counterparts

    Full text link
    We have combined spectrosopic and photometric data from the Sloan Digital Sky Survey (SDSS) with 1.41.4 GHz radio observations, conducted as part of the Stripe 82 1−21-2 GHz Snapshot Survey using the Karl G. Jansky Very Large Array (VLA), which covers ∌100\sim100 sq degrees, to a flux limit of 88 ÎŒ\muJy rms. Cross-matching the 11 76811\,768 radio source components with optical data via visual inspection results in a final sample of 4 7954\,795 cross-matched objects, of which 1 9961\,996 have spectroscopic redshifts and 2 7992\,799 objects have photometric redshifts. Three previously undiscovered Giant Radio Galaxies (GRGs) were found during the cross-matching process, which would have been missed using automated techniques. For the objects with spectroscopy we separate radio-loud Active Galactic Nuclei (AGN) and star-forming galaxies (SFGs) using three diagnostics and then further divide our radio-loud AGN into the HERG and LERG populations. A control matched sample of HERGs and LERGs, matched on stellar mass, redshift and radio luminosity, reveals that the host galaxies of LERGs are redder and more concentrated than HERGs. By combining with near-infrared data, we demonstrate that LERGs also follow a tight K−zK-z relationship. These results imply the LERG population are hosted by population of massive, passively evolving early-type galaxies. We go on to show that HERGs, LERGs, QSOs and star-forming galaxies in our sample all reside in different regions of a WISE colour-colour diagram. This cross-matched sample bridges the gap between previous `wide but shallow' and `deep but narrow' samples and will be useful for a number of future investigations.Comment: 17 pages, 19 figures. Resubmitted to MNRAS after the initial comment

    Atomic Hydrogen Cleaning of Polarized GaAs Photocathodes

    Full text link
    Atomic hydrogen cleaning followed by heat cleaning at 450∘^\circC was used to prepare negative-electron-affinity GaAs photocathodes. When hydrogen ions were eliminated, quantum efficiencies of 15% were obtained for bulk GaAs cathodes, higher than the results obtained using conventional 600∘^\circC heat cleaning. The low-temperature cleaning technique was successfully applied to thin, strained GaAs cathodes used for producing highly polarized electrons. No depolarization was observed even when the optimum cleaning time of about 30 seconds was extended by a factor of 100
    • 

    corecore