933 research outputs found
Escape from a metastable well under a time-ramped force
Thermally activated escape of an over-damped particle from a metastable well
under the action of a time-ramped force is studied. We express the mean first
passage time (MFPT) as the solution to a partial differential equation, which
we solve numerically for a model case. We discuss two approximations of the
MFPT, one of which works remarkably well over a wide range of loading rates,
while the second is easy to calculate and can provide a valuable first
estimate.Comment: 9 pages, including 2 figure
Segmentation of nerve bundles and ganglia in spine MRI using particle filters
14th International Conference, Toronto, Canada, September 18-22, 2011, Proceedings, Part IIIAutomatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on BĂ©zier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation.National Institutes of Health (U.S.) (NAMIC award U54-EB005149)National Science Foundation (U.S.) (CAREER grant 0642971
Rupture of multiple parallel molecular bonds under dynamic loading
Biological adhesion often involves several pairs of specific receptor-ligand
molecules. Using rate equations, we study theoretically the rupture of such
multiple parallel bonds under dynamic loading assisted by thermal activation.
For a simple generic type of cooperativity, both the rupture time and force
exhibit several different scaling regimes. The dependence of the rupture force
on the number of bonds is predicted to be either linear, like a square root or
logarithmic.Comment: 8 pages, 2 figure
Ligand-Receptor Interactions
The formation and dissociation of specific noncovalent interactions between a
variety of macromolecules play a crucial role in the function of biological
systems. During the last few years, three main lines of research led to a
dramatic improvement of our understanding of these important phenomena. First,
combination of genetic engineering and X ray cristallography made available a
simultaneous knowledg of the precise structure and affinity of series or
related ligand-receptor systems differing by a few well-defined atoms. Second,
improvement of computer power and simulation techniques allowed extended
exploration of the interaction of realistic macromolecules. Third, simultaneous
development of a variety of techniques based on atomic force microscopy,
hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or
flexible transducers yielded direct experimental information of the behavior of
single ligand receptor bonds. At the same time, investigation of well defined
cellular models raised the interest of biologists to the kinetic and mechanical
properties of cell membrane receptors. The aim of this review is to give a
description of these advances that benefitted from a largely multidisciplinar
approach
Single-molecule experiments in biological physics: methods and applications
I review single-molecule experiments (SME) in biological physics. Recent
technological developments have provided the tools to design and build
scientific instruments of high enough sensitivity and precision to manipulate
and visualize individual molecules and measure microscopic forces. Using SME it
is possible to: manipulate molecules one at a time and measure distributions
describing molecular properties; characterize the kinetics of biomolecular
reactions and; detect molecular intermediates. SME provide the additional
information about thermodynamics and kinetics of biomolecular processes. This
complements information obtained in traditional bulk assays. In SME it is also
possible to measure small energies and detect large Brownian deviations in
biomolecular reactions, thereby offering new methods and systems to scrutinize
the basic foundations of statistical mechanics. This review is written at a
very introductory level emphasizing the importance of SME to scientists
interested in knowing the common playground of ideas and the interdisciplinary
topics accessible by these techniques. The review discusses SME from an
experimental perspective, first exposing the most common experimental
methodologies and later presenting various molecular systems where such
techniques have been applied. I briefly discuss experimental techniques such as
atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers
(MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I
then present several applications of SME to the study of nucleic acids (DNA,
RNA and DNA condensation), proteins (protein-protein interactions, protein
folding and molecular motors). Finally, I discuss applications of SME to the
study of the nonequilibrium thermodynamics of small systems and the
experimental verification of fluctuation theorems. I conclude with a discussion
of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond.
Matt
Stick-release pattern in stretching single condensed polyelectrolyte toroids
Using Langevin dynamics simulations, we study elastic response of single
semiflexible polyelectrolytes to an external force pulling on the chain ends,
to mimic the stretching of DNA molecules by optical tweezers. The linear chains
are condensed by multivalent counterions into toroids. The force-extension
curve shows a series of sawtooth-like structure, known as the stick-release
patterns in experiments. We demonstrate that these patterns are a consequence
of the loop-by-loop unfolding of the toroidal structure. Moreover, the
dynamics, how the internal structure of chain varies under tension, is
examined. At the first stage of the stretching, the toroidal condensate
decreases its size until the loss of the first loop in the toroid and then,
oscillates around this size for the rest of the unfolding process. The normal
vector of the toroid is pulled toward the pulling-force direction and swings
back to its early direction repeatedly when the toroidal chain looses a loop.
The results provide new and valuable information concerning the elasticity and
the microscopic structure and dynamic pathway of salt-condensed DNA molecules
being stretched.Comment: 13 pages, 5 figures, accepted for publication in Macromolecule
- …