1,998 research outputs found
Hadron Spectroscopy with COMPASS at CERN
The aim of the COMPASS hadron programme is to study the light-quark hadron
spectrum, and in particular, to search for evidence of hybrids and glueballs.
COMPASS is a fixed-target experiment at the CERN SPS and features a two-stage
spectrometer with high momentum resolution, large acceptance, particle
identification and calorimetry. A short pilot run in 2004 resulted in the
observation of a spin-exotic state with consistent with the
debated . In addition, Coulomb production at low momentum transfer
data provide a test of Chiral Perturbation Theory. During 2008 and 2009, a
world leading data set was collected with hadron beam which is currently being
analysed. The large statistics allows for a thorough decomposition of the data
into partial waves. The COMPASS hadron data span over a broad range of channels
and shed light on several different aspects of QCD.Comment: 4 pages, 5 figure
Fermi Surface of KFeAs from Quantum Oscillations in Magnetostriction
We present a study of the Fermi surface of KFeAs single crystals.
Quantum oscillations were observed in magnetostriction measured down to 50 mK
and in magnetic fields up to 14 T. For , the calculated
effective masses are in agreement with recent de Haas-van Alphen and ARPES
experiments, showing enhanced values with respect to the ones obtained from
previous band calculations. For , we observed a small orbit at a
cyclotron frequency of 64 T, characterized by an effective mass of , supporting the presence of a three-dimensional pocket at the Z-point.Comment: SCES Conference, Tokyo 201
An information theoretic characterisation of auditory encoding.
The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content
Haemoglobin and size dependent constraints on swimbladder inflation in fish larvae
In developmental studies of fish species (especially physostomians) it could be demonstrated,
that the lack of haemoglobin during larval and juvenile stages is a relatively common phenomenon.
Generally it is linked with body translucency. In representatives of the families Galaxiidae,
Osmeridae and Clupeidae, partly reared, partly observed immediately after being caught in the wild, it
turned out, that this condition coincides with a considerable delay in swimbladder inflation. To determine
the moment of its first inflation, larvae placed in a hermetic chamber were observed under a
dissecting microscope. While lowering the pressure, the expanding swimbladder showed whether or
not its content is really gaseous. The reason postulated to be responsible for the delayed inflation is
that larvae lacking haemoglobin do not have the possibility of oxygen transport to their buoyancy
organ by means of the blood. Apart of this, capillarity force calculations and body force estimations
show that with decreasing size the constraints linked with surface tension increase overproportionally.
While in larger sized larvae like trout we could demonstrate inflation by swallowing air, in species with
small larvae this was not the case. Below a certain size, even in physostomians, the ductus pneumaticus
is no alternative to the blood pathway for swimbladder inflation
Evolution of Endurance Running Genes Across Primates
The endurance running hypothesis has emerged as a key idea to explain several unique anatomical, physiological, and genetic features of modern humansâamong these features is the evolution of ACTN3 (Bramble & Lieberman 2004, Nature), a gene linked to human athletic performance. An additional gene linked to human endurance performance is ACE. Because endurance running is a uniquely human trait, I predicted that ACE and ACTN3 genes would be evolving adaptively in the human lineage when examined in a wider primatological framework. To test this I compiled ACE and ACTN3 genes from 14 primate species and phylogenetically tested if these genes had a significantly different pattern of selection in the human lineage compared to other primates. I found that the human lineage experienced significantly weaker purifying selection in ACTN3 when compared to other primate lineages. The human ACE gene, on the other hand, was not evolving differently. Thus, these results show that there has been negative purifying selection acting on both genes for all primate species. However, ACTN3 is evolving differentially in humans than other primates and has a relatively elevated rate of amino acid replacements compared to other primates. Further research is required to study the amino acid replacements found in the human ACTN3 gene to determine if any play a role in humanâs enhanced endurance capabilities
Magnetic properties of single-crystalline CeCuGa3
The magnetic behavior of single-crystalline CeCuGa3 has been investigated.
The compound forms in a tetragonal BaAl4-type structure consisting of
rare-earth planes separated by Cu-Ga layers. If the Cu-Ga site disorder is
reduced, CeCuGa3 adopts the related, likewise tetragonal BaNiSn3-type
structure, in which the Ce ion are surrounded by different Cu and Ga layers and
the inversion symmetry is lost. In the literature conflicting reports about the
magnetic order of CeCuGa3 have been published. Single crystals with the
centrosymmetric structure variant exhibit ferromagnetic order below approx. 4 K
with a strong planar anisotropy. The magnetic behavior above the transition
temperature can be well understood by the crystal-field splitting of the 4f
Hund's rule ground-state multiplet of the Ce ions
Lichens as natural sources of biotechnologically relevant bacteria
International audienceThe search for microorganisms from novel sources and in particular microbial symbioses represents a promising approach in biotechnology. In this context, lichens have increasingly become a subject of research in microbial biotechnology, particularly after the recognition that a diverse community of bacteria other than cyanobacteria is an additional partner to the traditionally recognized algae-fungus mutualism. Here, we review recent studies using culture-dependent as well as culture-independent approaches showing that lichens can harbor diverse bacterial families known for the production of compounds of biotechnological interest and that several microorganisms isolated from lichens, in particular Actinobacteria and Cyanobacteria, can produce a number of bioactive compounds, many of them with biotechnological potential
- âŠ