48 research outputs found

    A fixed point theorem for L 1 spaces

    Get PDF
    We prove a fixed point theorem for a family of Banach spaces including notably L 1 and its non-commutative analogues. Several applications are given, e.g. the optimal solution to the "derivation problem” studied since the 1960

    Counting Hyperbolic Manifolds

    Get PDF
    No Abstrac

    Compactifications and algebraic completions of Limit groups

    Full text link
    In this paper we consider the existence of dense embeddings of Limit groups in locally compact groups generalizing earlier work of Breuillard, Gelander, Souto and Storm [GBSS] where surface groups were considered. Our main results are proved in the context of compact groups and algebraic groups over local fields. In addition we prove a generalization of the classical Baumslag lemma which is a useful tool for generating eventually faithful sequences of homomorphisms. The last section is dedicated to correct a mistake from [BGSS] and to get rid of the even genus assumption.Comment: v2: Substantial changes to sections 7 and 8.2. Typos corrected. References added. v3: Acknowledgement correcte

    On the distortion of twin building lattices

    Full text link
    We show that twin building lattices are undistorted in their ambient group; equivalently, the orbit map of the lattice to the product of the associated twin buildings is a quasi-isometric embedding. As a consequence, we provide an estimate of the quasi-flat rank of these lattices, which implies that there are infinitely many quasi-isometry classes of finitely presented simple groups. In an appendix, we describe how non-distortion of lattices is related to the integrability of the structural cocycle

    Counting and effective rigidity in algebra and geometry

    Full text link
    The purpose of this article is to produce effective versions of some rigidity results in algebra and geometry. On the geometric side, we focus on the spectrum of primitive geodesic lengths (resp., complex lengths) for arithmetic hyperbolic 2-manifolds (resp., 3-manifolds). By work of Reid, this spectrum determines the commensurability class of the 2-manifold (resp., 3-manifold). We establish effective versions of these rigidity results by ensuring that, for two incommensurable arithmetic manifolds of bounded volume, the length sets (resp., the complex length sets) must disagree for a length that can be explicitly bounded as a function of volume. We also prove an effective version of a similar rigidity result established by the second author with Reid on a surface analog of the length spectrum for hyperbolic 3-manifolds. These effective results have corresponding algebraic analogs involving maximal subfields and quaternion subalgebras of quaternion algebras. To prove these effective rigidity results, we establish results on the asymptotic behavior of certain algebraic and geometric counting functions which are of independent interest.Comment: v.2, 39 pages. To appear in Invent. Mat
    corecore