66,407 research outputs found
Recommended from our members
Recognition of Microseismic and Blasting Signals in Mines Based on Convolutional Neural Network and Stockwell Transform
The microseismic monitoring signals which need to be determined in mines include those caused by both rock bursts and by blasting. The blasting signals must be separated from the microseismic signals in order to extract the information needed for the correct location of the source and for determining the blast mechanism. The use of a convolutional neural network (CNN) is a viable approach to extract these blast characteristic parameters automatically and to achieve the accuracy needed in the signal recognition. The Stockwell Transform (or S-Transform) has excellent two-dimensional time-frequency characteristics and thus to obtain the microseismic signal and blasting vibration signal separately, the microseismic signal has been converted in this work into a two-dimensional image format by use of the S-Transform, following which it is recognized by using the CNN. The sample data given in this paper are used for model training, where the training sample is an image containing three RGB color channels. The training time can be decreased by means of reducing the picture size and thus reducing the number of training steps used. The optimal combination of parameters can then be obtained after continuously updating the training parameters. When the image size is 180 × 140 pixels, it has been shown that the test accuracy can reach 96.15% and that it is feasible to classify separately the blasting signal and the microseismic signal based on using the S-Transform and the CNN model architecture, where the training parameters were designed by synthesizing LeNet-5 and AlexNet
Physical modelling of amorphous thermoplastic polymer and numerical simulation of micro hot embossing process
Micro hot embossing process is considered as one of the most promising micro replication processes for manufacturing of polymeric components, especially for the high aspect ratio components and large surface structural components. A large number of hot embossing experimental results have been published, the material modelling and processes simulation to improve the quality of micro replication by hot embossing process are still lacking. This paper consists to 3D modelling of micro hot embossing process with amorphous thermoplastic polymers, including the mechanical characterisation of polymers properties, identification of the viscoelastic behaviour law of the polymers, numerical simulation and experimental investigation of micro hot embossing process. Static compression creep tests have been carried out to investigate the selected polymers’ viscoelastic properties. The Generalized Maxwell model has been proposed to describe the relaxation modulus of the polymers and good agreement has been observed. The numerical simulation of the hot embossing process in 3D has been achieved by taking into account the viscoelastic behaviour of the polymers. The microfluidic devices with the thickness of 2 mm have been elaborated by hot embossing process. The hot embossing process has been carried out using horizontal injection/compression moulding equipment, especially developed for this study. A complete compression mould tool, equipped with the heating system, the cooling system, the ejection system and the vacuum system, has been designed and elaborated in our research. Polymer-based microfluidic devices have been successfully replicated by the hot embossing process using the compression system developed. Proper agreement between the numerical simulation and the experimental elaboration has been observed. It shows strong possibility for the development of the 3D numerical model to optimize the micro hot embossing process in the future
Two-body Cabibbo-suppressed Decays of Charmed Baryons into Vector Mesons and into Photons
The heavy quark effective theory and the factorization approximation are used
to treat the Cabibbo-suppressed decays of charmed baryons to vector mesons,
,
and . The input from two recent experimental results on
decays allows the estimation of the branching ratios for these modes, which
turn out to be between and . The long distance contribution
of these transitions via vector meson dominance to the radiative weak processes
, and
leads to quite small branching ratios,
; the larger value holds if a sum rule between the coupling
constants of the vector mesons is broken.Comment: 11 pages, latex, no figure
Flavor and Spin Contents of the Nucleon in the Quark Model with Chiral Symmetry
A simple calculation in the framework of the chiral quark theory of Manohar
and Georgi yields results that can account for many of the ''failures'' of the
naive quark model: significant strange quark content in the nucleon as
indicated by the value of the -
asymmetry in the nucleon as measured by the deviation from Gottfried sum rule
and by the Drell-Yan process, as well as the various quark contributions to the
nucleon spin as measured by the deep inelastic polarized lepton-nucleon
scatterings.Comment: figure has been separated from tex file. No other changes. Preprint
CMU-HEP94-3
Instantons and the singlet-coupling in the chiral quark model
Chiral quark model with a broken-U(3) flavor symmetry can be interpreted as
the effective theory of the instanton-dominated non-perturbative QCD. This
naturally suggests the possibility of a negative singlet/octet coupling ratio,
which has been found, in a previous publication, to be compatible with the
phenomenological description of the nucleon spin-flavor structure.Comment: 9 page
Improved targeted outdoor advertising based on geotagged social media data
With as many as 4 million passenger journeys within the London Underground system every weekday, the advertisement spaces across the stations hold considerable potential. However, the planning of specific advertisements across time and space is difficult to optimize as little is known about passers-by. Therefore, in order to generate detailed and quantifiable spatio-temporal information which is particular to each station area, we have explored local social media data. This research demonstrates how local interests can be mined from geotagged Tweets by using Latent Dirichlet Allocation, an unsupervised topic modelling method. The relative popularity of each of the key topics is then explored spatially and temporally between the station areas. Overall, this research demonstrates the value of using Geographical Information System and text-mining techniques to generate valuable spatio-temporal information on popular interests from Twitter data
Characterization of grain boundaries in silicon
Zero-bias conductance and capacitance measurements at various temperatures were used to study trapped charges and potential barrier height at the boundaries. Deep-level transient spectroscopy (DLTS) was applied to measure the density of states at the boundary. A study of photoconductivity of grain boundaries in p-type silicon demonstrated the applicability of the technique in the measurement of minority carrier recombination velocity at the grain boundary. Enhanced diffusion of phosphorus at grain boundaries in three cast polycrystalline photovoltaic materials was studied. Enhancements for the three were the same, indicating that the properties of boundaries are similar, although grown by different techniques. Grain boundaries capable of enhancing the diffusion were found always to have strong recombination activities; the phenomena could be related to dangling bonds at the boundaries. Evidence that incoherent second-order twins of (111)/(115) type are diffusion-active is presented
Internal Anisotropy of Collision Cascades
We investigate the internal anisotropy of collision cascades arising from the
branching structure. We show that the global fractal dimension cannot give an
adequate description of the geometrical structure of cascades because it is
insensitive to the internal anisotropy. In order to give a more elaborate
description we introduce an angular correlation function, which takes into
account the direction of the local growth of the branches of the cascades. It
is demonstrated that the angular correlation function gives a quantitative
description of the directionality and the interrelation of branches. The power
law decay of the angular correlation is evidenced and characterized by an
exponent and an angular correlation length different from the radius of
gyration. It is demonstrated that the overlapping of subcascades has a strong
effect on the angular correlation.Comment: RevteX, 8 pages, 6 .eps figures include
Polarimetric Multispectral Imaging Technology
The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration
- …