178 research outputs found

    Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation

    Get PDF
    In this paper, we investigate the pharmacokinetics and effect of doxorubicin and cisplatin in vascularized tumors through two-dimensional simulations. We take into account especially vascular and morphological heterogeneity as well as cellular and lesion-level pharmacokinetic determinants like P-glycoprotein (Pgp) efflux and cell density. To do this we construct a multi-compartment PKPD model calibrated from published experimental data and simulate 2-h bolus administrations followed by 18-h drug washout. Our results show that lesion-scale drug and nutrient distribution may significantly impact therapeutic efficacy and should be considered as carefully as genetic determinants modulating, for example, the production of multidrug-resistance protein or topoisomerase II. We visualize and rigorously quantify distributions of nutrient, drug, and resulting cell inhibition. A main result is the existence of significant heterogeneity in all three, yielding poor inhibition in a large fraction of the lesion, and commensurately increased serum drug concentration necessary for an average 50% inhibition throughout the lesion (the IC50 concentration). For doxorubicin the effect of hypoxia and hypoglycemia (“nutrient effect”) is isolated and shown to further increase cell inhibition heterogeneity and double the IC50, both undesirable. We also show how the therapeutic effectiveness of doxorubicin penetration therapy depends upon other determinants affecting drug distribution, such as cellular efflux and density, offering some insight into the conditions under which otherwise promising therapies may fail and, more importantly, when they will succeed. Cisplatin is used as a contrast to doxorubicin since both published experimental data and our simulations indicate its lesion distribution is more uniform than that of doxorubicin. Because of this some of the complexity in predicting its therapeutic efficacy is mitigated. Using this advantage, we show results suggesting that in vitro monolayer assays using this drug may more accurately predict in vivo performance than for drugs like doxorubicin. The nonlinear interaction among various determinants representing cell and lesion phenotype as well as therapeutic strategies is a unifying theme of our results. Throughout it can be appreciated that macroscopic environmental conditions, notably drug and nutrient distributions, give rise to considerable variation in lesion response, hence clinical resistance. Moreover, the synergy or antagonism of combined therapeutic strategies depends heavily upon this environment

    Revisiting perioperative chemotherapy: the critical importance of targeting residual cancer prior to wound healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scientists and physicians have long noted similarities between the general behavior of a cancerous tumor and the physiological process of wound healing. But it may be during metastasis that the parallels between cancer and wound healing are most pronounced. And more particularly and for the reasons detailed in this paper, any cancer remaining after the removal of a solid tumor, whether found in micrometastatic deposits in the stroma or within the circulation, may be heavily dependent on wound healing pathways for its further survival and proliferation.</p> <p>Discussion</p> <p>If cancer cells can hijack the wound healing process to facilitate their metastatic spread and survival, then the period immediately after surgery may be a particularly vulnerable period of time for the host, as wound healing pathways are activated and amplified after the primary tumor is removed. Given that we often wait 30 days or more after surgical removal of the primary tumor before initiating adjuvant chemotherapy to allow time for the wound to heal, this paper challenges the wisdom of that clinical paradigm, providing a theoretical rationale for administering therapy during the perioperative period.</p> <p>Summary</p> <p>Waiting for wound healing to occur before initiating adjuvant therapies may be seriously compromising their effectiveness, and patients subsequently rendered incurable as a result of this wait. Clinical trials to establish the safety and effectiveness of administering adjuvant therapies perioperatively are needed. These therapies should target not only the residual cancer cells, but also the wound healing pathway utilized by these cells to proliferate and metastasize.</p

    A Systems Approach for Tumor Pharmacokinetics

    Get PDF
    Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.National Institutes of Health (U.S.) (grant T32 CA079443

    Preclinical Organotypic Models for the Assessment of Novel Cancer Therapeutics and Treatment

    Get PDF

    Engineered Models of Metastasis with Application to Study Cancer Biomechanics

    Get PDF
    Three-dimensional complex biomechanical interactions occur from the initial steps of tumor formation to the later phases of cancer metastasis. Conventional monolayer cultures cannot recapitulate the complex microenvironment and chemical and mechanical cues that tumor cells experience during their metastatic journey, nor the complexity of their interactions with other, noncancerous cells. As alternative approaches, various engineered models have been developed to recapitulate specific features of each step of metastasis with tunable microenvironments to test a variety of mechanistic hypotheses. Here the main recent advances in the technologies that provide deeper insight into the process of cancer dissemination are discussed, with an emphasis on three-dimensional and mechanical factors as well as interactions between multiple cell types
    corecore