2,187 research outputs found
Hybrid quantum repeater using bright coherent light
We describe a quantum repeater protocol for long-distance quantum
communication. In this scheme, entanglement is created between qubits at
intermediate stations of the channel by using a weak dispersive light-matter
interaction and distributing the outgoing bright coherent light pulses among
the stations. Noisy entangled pairs of electronic spin are then prepared with
high success probability via homodyne detection and postselection. The local
gates for entanglement purification and swapping are deterministic and
measurement-free, based upon the same coherent-light resources and weak
interactions as for the initial entanglement distribution. Finally, the
entanglement is stored in a nuclear-spin-based quantum memory. With our system,
qubit-communication rates approaching 100 Hz over 1280 km with fidelities near
99% are possible for reasonable local gate errors.Comment: title changed, final published versio
Multi-spin dynamics of the solid-state NMR Free Induction Decay
We present a new experimental investigation of the NMR free induction decay
(FID) in a lattice of spin-1/2 nuclei in a strong Zeeman field. Following a
pi/2 pulse, evolution under the secular dipolar Hamiltonian preserves coherence
number in the Zeeman eigenbasis, but changes the number of correlated spins in
the state. The observed signal is seen to decay as single-spin, single-quantum
coherences evolve into multiple-spin coherences under the action of the dipolar
Hamiltonian. In order to probe the multiple-spin dynamics during the FID, we
measured the growth of coherence orders in a basis other than the usual Zeeman
eigenbasis. This measurement provides the first direct experimental observation
of the growth of coherent multiple-spin correlations during the FID.
Experiments were performed with a cubic lattice of spins (19F in calcium
fluoride) and a linear spin chain (19F in fluorapatite). It is seen that the
geometrical arrangement of the spins plays a significant role in the
development of higher order correlations. The results are discussed in light of
existing theoretical models.Comment: 7 pages, 6 figure
The efficiencies of generating cluster states with weak non-linearities
We propose a scalable approach to building cluster states of matter qubits
using coherent states of light. Recent work on the subject relies on the use of
single photonic qubits in the measurement process. These schemes can be made
robust to detector loss, spontaneous emission and cavity mismatching but as a
consequence the overhead costs grow rapidly, in particular when considering
single photon loss. In contrast, our approach uses continuous variables and
highly efficient homodyne measurements. We present a two-qubit scheme, with a
simple bucket measurement system yielding an entangling operation with success
probability 1/2. Then we extend this to a three-qubit interaction, increasing
this probability to 3/4. We discuss the important issues of the overhead cost
and the time scaling. This leads to a "no-measurement" approach to building
cluster states, making use of geometric phases in phase space.Comment: 21 pages, to appear in special issue of New J. Phys. on
"Measurement-Based Quantum Information Processing
Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light
We describe a system for long-distance distribution of quantum entanglement,
in which coherent light with large average photon number interacts dispersively
with single, far-detuned atoms or semiconductor impurities in optical cavities.
Entanglement is heralded by homodyne detection using a second bright light
pulse for phase reference. The use of bright pulses leads to a high success
probability for the generation of entanglement, at the cost of a lower initial
fidelity. This fidelity may be boosted by entanglement purification techniques,
implemented with the same physical resources. The need for more purification
steps is well compensated for by the increased probability of success when
compared to heralded entanglement schemes using single photons or weak coherent
pulses with realistic detectors. The principle cause of the lower initial
fidelity is fiber loss; however, spontaneous decay and cavity losses during the
dispersive atom/cavity interactions can also impair performance. We show that
these effects may be minimized for emitter-cavity systems in the weak-coupling
regime as long as the resonant Purcell factor is larger than one, the cavity is
over-coupled, and the optical pulses are sufficiently long. We support this
claim with numerical, semiclassical calculations using parameters for three
realistic systems: optically bright donor-bound impurities such as 19-F:ZnSe
with a moderate-Q microcavity, the optically dim 31-P:Si system with a high-Q
microcavity, and trapped ions in large but very high-Q cavities.Comment: Please consult the published version, where assorted typos are
corrected. It is freely available at http://stacks.iop.org/1367-2630/8/18
Simultaneous sub-second hyperpolarization of the nuclear and electron spins of phosphorus in silicon
We demonstrate a method which can hyperpolarize both the electron and nuclear
spins of 31P donors in Si at low field, where both would be essentially
unpolarized in equilibrium. It is based on the selective ionization of donors
in a specific hyperfine state by optically pumping donor bound exciton
hyperfine transitions, which can be spectrally resolved in 28Si. Electron and
nuclear polarizations of 90% and 76%, respectively, are obtained in less than a
second, providing an initialization mechanism for qubits based on these spins,
and enabling further ESR and NMR studies on dilute 31P in 28Si.Comment: 4 pages, 3 figure
- …