285 research outputs found

    Functional outcome and muscle wasting in adults with tetanus.

    Get PDF
    BACKGROUND: In many countries, in-hospital survival from tetanus is increasing, but long-term outcome is unknown. In high-income settings, critical illness is associated with muscle wasting and poor functional outcome, but there are few data from resource-limited settings. In this study we aimed to assess muscle wasting and long-term functional outcome in adults with tetanus. METHODS: In a prospective observational study involving 80 adults with tetanus, sequential rectus femoris ultrasound measurements were made at admission, 7 days, 14 days and hospital discharge. Functional outcome was assessed at hospital discharge using the Timed Up and Go test, Clinical Frailty Score, Barthel Index and RAND 36-item Short Form Health Survey (SF-36) and 3 and 6 months after discharge using the SF-36 and Barthel Index. RESULTS: Significant muscle wasting occurred between hospital admission and discharge (p70 y of age, functional recovery at 6 months was reduced compared with younger patients. Hospital-acquired infection and age were risk factors for muscle wasting. CONCLUSIONS: Significant muscle wasting during hospitalization occurred in patients with tetanus, the extent of which correlates with functional outcome

    Chemical composition, antimicrobial and larvicidal activities of essential oils of two Syzygium species from Vietnam

    Get PDF
    Abstract The present study is the first to investigate the chemical composition, antimicrobial and larvicidal activities of the essential oils from the leaves of Syzygium attopeuense (Gagnep.) Merr. & L.M.Perry and Syzygium tonkinense (Gagnep.) Merr. & L.M.Perry collected in Vietnam. The essential oils were extracted by hydrodistillation and analyzed by GC and GC–MS. The study indicated the presence of a high percentage of sesquiterpenes in both investigated essential oils. The major components of S. attopeuense essential oil were bicyclogermacrene (24.26%), (E)-caryophyllene (11.72%), and (E)-β-ocimene (6.75%), whereas S. tonkinense essential oil was dominated by (E)-caryophyllene (80.80%). The antimicrobial activity of essential oils was evaluated by broth microdilution assay to determine the minimum inhibitory concentration (MIC) and median inhibitory concentration (IC50). Both essential oils exhibited remarkable inhibitory activity against all tested Gram-positive bacteria and yeast than Gram-negative bacteria. Among them, essential oils of S. attopeuense and S. tonkinense possessed the strongest activity against Enterococcus faecalis (MIC = 4.00 μg/mL; IC50 = 1.69 μg/mL) and Candida albicans (MIC = 16.00 μg/mL; IC50 = 8.67 μg/mL), respectively. Furthermore, the larvicidal activity of essential oils was tested using fourth-instar larvae of Aedes aegypti. Results from the larvicidal test revealed that both essential oils had an excellent inhibitory effect against A. aegypti larvae with LC50 values from 25.55 to 30.18 μg/mL and LC90 values from 33.00 to 39.01 μg/mL. Our findings demonstrate that the essential oil extracted from S. attopeuense and S. tonkinense are potential sources of natural antimicrobials and can act as inexpensive mosquito larvicidal agents

    Comparison of Asian Aquaculture Products by Use of Statistically Supported Life Cycle Assessment

    Get PDF
    We investigated aquaculture production of Asian tiger shrimp, whiteleg shrimp, giant river prawn, tilapia, and pangasius catfish in Bangladesh, China, Thailand, and Vietnam by using life cycle assessments (LCAs), with the purpose of evaluating the comparative eco-efficiency of producing different aquatic food products. Our starting hypothesis was that different production systems are associated with significantly different environmental impacts, as the production of these aquatic species differs in intensity and management practices. In order to test this hypothesis, we estimated each system's global warming, eutrophication, and freshwater ecotoxicity impacts. The contribution to these impacts and the overall dispersions relative to results were propagated by Monte Carlo simulations and dependent sampling. Paired testing showed significant (p < 0.05) differences between the median impacts of most production systems in the intraspecies comparisons, even after a Bonferroni correction. For the full distributions instead of only the median, only for Asian tiger shrimp did more than 95% of the propagated Monte Carlo results favor certain farming systems. The major environmental hot-spots driving the differences in environmental performance among systems were fishmeal from mixed fisheries for global warming, pond runoff and sediment discards for eutrophication, and agricultural pesticides, metals, benzalkonium chloride, and other chlorine-releasing compounds for freshwater ecotoxicity. The Asian aquaculture industry should therefore strive toward farming systems relying upon pelleted species-specific feeds, where the fishmeal inclusion is limited and sourced sustainably. Also, excessive nutrients should be recycled in integrated organic agriculture together with efficient aeration solutions powered by renewable energy sources. © 2015 American Chemical Society.Additional coauthors: M. Mahfujul Haque Froukje Kruijssen, Geert R. de Snoo, Reinout Heijungs, Peter M. van Bodegom, and Jeroen B. Guiné

    Photonic fractal metamaterials: a metal–semiconductor platform with enhanced volatile‐compound sensing performance

    Get PDF
    Advance of photonics media is restrained by the lack of structuring techniques for the 3D fabrication of active materials with long‐range periodicity. A methodology is reported for the engineering of tunable resonant photonic media with thickness exceeding the plasmonic near‐field enhancement region by more than two orders of magnitude. The media architecture consists of a stochastically ordered distribution of plasmonic nanocrystals in a fractal scaffold of high‐index semiconductors. This plasmonic‐semiconductor fractal media supports the propagation of surface plasmons with drastically enhanced intensity over multiple length scales, overcoming the 2D limitations of established metasurface technologies. The fractal media are used for the fabrication of plasmonic optical gas sensors, achieving a limit of detection of 0.01 vol% at room temperature and sensitivity up to 1.9 nm vol%−1, demonstrating almost a fivefold increase with respect to an optimized planar geometry. Beneficially to their implementation, the self‐assembly mechanism of this fractal architecture allows fabrication of micrometer‐thick media over surfaces of several square centimeters in a few seconds. The designable optical features and intrinsic scalability of these photonic fractal metamaterials provide ample opportunities for applications, bridging across transformation optics, sensing, and light harvesting

    Tuning the Coordination Structure of Cu-N-C Single Atom Catalysts for Simultaneous Electrochemical Reduction of CO2 and NO3 - to Urea

    Get PDF
    Closing both the carbon and nitrogen loops is a critical venture to support the establishment of the circular, net-zero carbon economy. Although single atom catalysts (SACs) have gained interest for the electrochemical reduction reactions of both carbon dioxide (CO₂RR) and nitrate (NO₃RR), the structure–activity relationship for Cu SAC coordination for these reactions remains unclear and should be explored such that a fundamental understanding is developed. To this end, the role of the Cu coordination structure is investigated in dictating the activity and selectivity for the CO₂RR and NO3RR. In agreement with the density functional theory calculations, it is revealed that Cu-N₄ sites exhibit higher intrinsic activity toward the CO₂RR, whilst both Cu-N₄ and Cu-N₄−x-Cx sites are active toward the NO3RR. Leveraging these findings, CO₂RR and NO₃RR are coupled for the formation of urea on Cu SACs, revealing the importance of *COOH binding as a critical parameter determining the catalytic activity for urea production. To the best of the authors’ knowledge, this is the first report employing SACs for electrochemical urea synthesis from CO₂RR and NO₃RR, which achieves a Faradaic efficiency of 28% for urea production with a current density of −27 mA cm–2 at −0.9 V versus the reversible hydrogen electrode.Josh Leverett, Thanh Tran-Phu, Jodie A. Yuwono, Priyank Kumar, Changmin Kim, Qingfeng Zhai, Chen Han, Jiangtao Qu, Julie Cairney, Alexandr N. Simonov, Rosalie K. Hocking, Liming Dai, Rahman Daiyan, and Rose Ama

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Copy number, linkage disequilibrium and disease association in the FCGR locus.

    Get PDF
    The response of a leukocyte to immune complexes (ICs) is modulated by receptors for the Fc region of IgG (FcgammaRs), and alterations in their affinity or function have been associated with risk of autoimmune diseases, including systemic lupus erythematosus (SLE). The low-affinity FcgammaR genomic locus is complex, containing regions of copy number variation (CNV) which can alter receptor expression and leukocyte responses to IgG. Combined paralogue ratio tests (PRTs) were used to distinguish three intervals within the FCGR locus which undergo CNV, and to determine FCGR gene copy number (CN). There were significant differences in FCGR3B and FCGR3A CNV profiles between Caucasian, East Asian and Kenyan populations. A previously noted association of low FCGR3B CN with SLE in Caucasians was supported [OR = 1.57 (1.08-2.27), P = 0.018], and replicated in Chinese [OR = 1.65 (1.25-2.18), P = 4 x 10(-4)]. There was no association of FCGR3B CNV with vasculitis, nor with malarial or bacterial infection. Linkage disequilibrium (LD) between multi-allelic FCGR3B CNV and SLE-associated SNPs in the FCGR locus was defined for the first time. Despite LD between FCGR3B CNV and a variant in FcgammaRIIB (I232T) which abolishes inhibitory function, both reduced CN of FCGR3B and homozygosity of the FcgammaRIIB-232T allele were individually strongly associated with SLE risk. Thus CN of FCGR3B, which controls IC responses and uptake by neutrophils, and variations in FCGR2B, which controls factors such as antibody production and macrophage activation, are important in SLE pathogenesis. Further interpretations of contributions to pathogenesis by FcgammaRs must be made in the context of LD involving CNV regions

    Ubiquitin Ligase RNF146 Regulates Tankyrase and Axin to Promote Wnt Signaling

    Get PDF
    Canonical Wnt signaling is controlled intracellularly by the level of β-catenin protein, which is dependent on Axin scaffolding of a complex that phosphorylates β-catenin to target it for ubiquitylation and proteasomal degradation. This function of Axin is counteracted through relocalization of Axin protein to the Wnt receptor complex to allow for ligand-activated Wnt signaling. AXIN1 and AXIN2 protein levels are regulated by tankyrase-mediated poly(ADP-ribosyl)ation (PARsylation), which destabilizes Axin and promotes signaling. Mechanistically, how tankyrase limits Axin protein accumulation, and how tankyrase levels and activity are regulated for this function, are currently under investigation. By RNAi screening, we identified the RNF146 RING-type ubiquitin E3 ligase as a positive regulator of Wnt signaling that operates with tankyrase to maintain low steady-state levels of Axin proteins. RNF146 also destabilizes tankyrases TNKS1 and TNKS2 proteins and, in a reciprocal relationship, tankyrase activity reduces RNF146 protein levels. We show that RNF146, tankyrase, and Axin form a protein complex, and that RNF146 mediates ubiquitylation of all three proteins to target them for proteasomal degradation. RNF146 is a cytoplasmic protein that also prevents tankyrase protein aggregation at a centrosomal location. Tankyrase auto-PARsylation and PARsylation of Axin is known to lead to proteasome-mediated degradation of these proteins, and we demonstrate that, through ubiquitylation, RNF146 mediates this process to regulate Wnt signaling
    corecore