7,049 research outputs found
Origin of the Immirzi Parameter
Using quadratic spinor techniques we demonstrate that the Immirzi parameter
can be expressed as ratio between scalar and pseudo-scalar contributions in the
theory and can be interpreted as a measure of how Einstein gravity differs from
a generally constructed covariant theory for gravity. This interpretation is
independent of how gravity is quantized. One of the important advantage of
deriving the Immirzi parameter using the quadratic spinor techniques is to
allow the introduction of renormalization scale associated with the Immirzi
parameter through the expectation value of the spinor field upon quantization
Hierarchy, not lexical regularity, modulates low-frequency neural synchrony during language comprehension
Neural responses appear to synchronize with sentence structure. However, researchers have debated whether this response in the delta band (0.5 - 3 Hz) really reflects hierarchical information, or simply lexical regularities. Computational simulations in which sentences are represented simply as sequences of high-dimensional numeric vectors that encode lexical information seem to give rise to power spectra similar to those observed for sentence synchronization, suggesting that sentence-level cortical tracking findings may reflect sequential lexical or part-of-speech information, and not necessarily hierarchical syntactic information. Using electroencephalography (EEG) data and the frequency-tagging paradigm, we develop a novel experimental condition to tease apart the predictions of the lexical and the hierarchical accounts of the attested low-frequency synchronization. Under a lexical model, synchronization should be observed even when words are reversed within their phrases (e.g. "sheep white grass eat" instead of "white sheep eat grass"), because the same lexical items are preserved at the same regular intervals. Critically, such stimuli are not syntactically well-formed, thus a hierarchical model does not predict synchronization of phrase- and sentence-level structure in the reversed phrase condition. Computational simulations confirm these diverging predictions. EEG data from N = 31 native speakers of Mandarin show robust delta synchronization to syntactically well-formed isochronous speech. Importantly, no such pattern is observed for reversed phrases, consistent with the hierarchical, but not the lexical, accounts
Efficient nonlinear room-temperature spin injection from ferromagnets into semiconductors through a modified Schottky barrier
We suggest a consistent microscopic theory of spin injection from a
ferromagnet (FM) into a semiconductor (S). It describes tunneling and emission
of electrons through modified FM-S Schottky barrier with an ultrathin heavily
doped interfacial S layer . We calculate nonlinear spin-selective properties of
such a reverse-biased FM-S junction, its nonlinear I-V characteristic, current
saturation, and spin accumulation in S. We show that the spin polarization of
current, spin density, and penetration length increase with the total current
until saturation. We find conditions for most efficient spin injection, which
are opposite to the results of previous works, since the present theory
suggests using a lightly doped resistive semiconductor. It is shown that the
maximal spin polarizations of current and electrons (spin accumulation) can
approach 100% at room temperatures and low current density in a nondegenerate
high-resistance semiconductor.Comment: 7 pages, 2 figures; provides detailed comparison with earlier works
on spin injectio
Properties of the symplectic structure of General Relativity for spatially bounded spacetime regions
We continue a previous analysis of the covariant Hamiltonian symplectic
structure of General Relativity for spatially bounded regions of spacetime. To
allow for near complete generality, the Hamiltonian is formulated using any
fixed hypersurface, with a boundary given by a closed spacelike 2-surface. A
main result is that we obtain Hamiltonians associated to Dirichlet and Neumann
boundary conditions on the gravitational field coupled to matter sources, in
particular a Klein-Gordon field, an electromagnetic field, and a set of
Yang-Mills-Higgs fields. The Hamiltonians are given by a covariant form of the
Arnowitt-Deser-Misner Hamiltonian modified by a surface integral term that
depends on the particular boundary conditions. The general form of this surface
integral involves an underlying ``energy-momentum'' vector in the spacetime
tangent space at the spatial boundary 2-surface. We give examples of the
resulting Dirichlet and Neumann vectors for topologically spherical 2-surfaces
in Minkowski spacetime, spherically symmetric spacetimes, and stationary
axisymmetric spacetimes. Moreover, we show the relation between these vectors
and the ADM energy-momentum vector for a 2-surface taken in a limit to be
spatial infinity in asymptotically flat spacetimes. We also discuss the
geometrical properties of the Dirichlet and Neumann vectors and obtain several
striking results relating these vectors to the mean curvature and normal
curvature connection of the 2-surface. Most significantly, the part of the
Dirichlet vector normal to the 2-surface depends only the spacetime metric at
this surface and thereby defines a geometrical normal vector field on the
2-surface. Properties and examples of this normal vector are discussed.Comment: 46 pages; minor errata corrected in Eqs. (3.15), (3.24), (4.37) and
in discussion of examples in sections IV B,
Quantum Number Density Asymmetries Within QCD Jets Correlated With Lambda Polarization
The observation of jets in a variety of hard-scattering processes has allowed
the quantitative study of perturbative quantum chromodynamics (PQCD) by
comparing detailed theoretical predictions with a wide range of experimental
data. This paper examines how some important, nonperturbative, facets of QCD
involving the internal dynamical structure of jets can be studied by measuring
the spin orientation of Lambda particles produced in these jets. The
measurement of the transverse polarization for an individual Lambda within a
QCD jet permits the definition of spin-directed asymmetries in local quantum
number densities in rapidity space (such as charge, strangeness and baryon
number densities) involving neighboring hadrons in the jet. These asymmetries
can only be generated by soft, nonperturbative dynamical mechanisms and such
measurements can provide insight not otherwise accessible into the color
rearrangement that occurs during the hadronization stage of the fragmentation
process.Comment: The replacement manuscript contains a new abstract, five pages of
additional material and a revised version of Fig.
A unique 3D nitrogen-doped carbon composite as high-performance oxygen reduction catalyst
The synthesis and properties of an oxygen reduction catalyst based on a unique 3-dimensional (3D) nitrogen doped (N-doped) carbon composite are described. The composite material is synthesised via a two-step hydrothermal and pyrolysis method using bio-source low-cost materials of galactose and melamine. Firstly, the use of iron salts and galactose to hydrothermally produceiron oxide (Fe₂O₃) magnetic nanoparticle clusters embedded carbon spheres. Secondly, magnetic nanoparticles diffused out of the carbon sphere when pyrolysed in the presence of melamine as nitrogen precursor. Interestingly, many of these nanoparticles, as catalyst-grown carbon nanotubes (CNTs), resulted in the formation of N-doped CNTs and N-doped carbon spheres under the decomposition of carbon and a nitrogen environment. The composite material consists of integrated N-doped carbon microspheres and CNTs show high ORR activity through a predominantly four-electron pathway.Ramesh Karunagaran, Tran Thanh Tung, Cameron Shearer, Diana Tran, Campbell Coghlan, Christian Doonan, and Dusan Losi
VDNA: The virtual DNA plug-in for VMD
Summary: The DNA inter base pair step parameters (Tilt, Roll, Twist, Shift, Slide, Rise) are a standard internal coordinate representation of DNA. In the absence of bend and shear, it is relatively easy to mentally visualize how Twist and Rise generate the familiar double helix. More complex structures do not readily yield to such intuition. For this reason, we developed a plug-in for VMD that accepts a set of mathematical expressions as input and generates a coarse-grained model of DNA as output. This feature of VDNA appears to provide a unique approach to DNA modeling. Predefined expressions include: linear, sheared, bent and circular DNA, and models of the nucleosome superhelix, chromatin, thermal motion and nucleosome unwrapping
Leptoproduction of heavy quarks
There are presently two approaches to calculating heavy quark production for the deeply inelastic scattering process in current literature. The conventional fixed-flavor scheme focuses on the flavor creation mechanism and includes the heavy quark only as a final state particle in the hard scattering cross section; this has been computed to next-to-leading order--\alphas^2. The more recently formulated variable-flavor scheme includes, in addition, the flavor excitation process where the initial state partons of all flavors contribute above their respective threshold, as commonly accepted for calculations of other high energy processes; this was initially carried out to leading order--\alphas^1. We first compare and contrast these existing calculations. As expected from physical grounds, the next-to-leading-order fixed-flavor scheme calculation yields good results near threshold, while the leading-order variable-flavor scheme calculation works well for asymptotic Q^2. The quality of the calculations in the intermediate region is dependent upon the x and Q^2 values chosen. An accurate self-consistent QCD calculation over the entire range can be obtained by extending the variable-flavor scheme to next-to-leading-order. Recent work to carry out this calculation is described. Preliminary numerical results of this calculation are also presented for comparison
On Mean Pose and Variability of 3D Deformable Models
International audienceWe present a novel methodology for the analysis of complex object shapes in motion observed by multiple video cameras. In particular, we propose to learn local surface rigidity probabilities (i.e., deformations), and to estimate a mean pose over a temporal sequence. Local deformations can be used for rigidity-based dynamic surface segmentation, while a mean pose can be used as a sequence keyframe or a cluster prototype and has therefore numerous applications, such as motion synthesis or sequential alignment for compression or morphing. We take advantage of recent advances in surface tracking techniques to formulate a generative model of 3D temporal sequences using a probabilistic framework, which conditions shape fitting over all frames to a simple set of intrinsic surface rigidity properties. Surface tracking and rigidity variable estimation can then be formulated as an Expectation-Maximization inference problem and solved by alternatively minimizing two nested fixed point iterations. We show that this framework provides a new fundamental building block for various applications of shape analysis, and achieves comparable tracking performance to state of the art surface tracking techniques on real datasets, even compared to approaches using strong kinematic priors such as rigid skeletons
Discrete Symmetries in the Weyl Expansion for Quantum Billiards
We consider two and three-dimensional quantum billiards with discrete
symmetries. We derive the first terms of the Weyl expansion for the level
density projected onto the irreducible representations of the symmetry group.
As an illustration the method is applied to the icosahedral billiard. The paper
was published in J. Phys. A /27/ (1994) 4317-4323Comment: 8 printed pages Latex fil
- …