1 research outputs found
Backward Reachability of Array-based Systems by SMT solving: Termination and Invariant Synthesis
The safety of infinite state systems can be checked by a backward
reachability procedure. For certain classes of systems, it is possible to prove
the termination of the procedure and hence conclude the decidability of the
safety problem. Although backward reachability is property-directed, it can
unnecessarily explore (large) portions of the state space of a system which are
not required to verify the safety property under consideration. To avoid this,
invariants can be used to dramatically prune the search space. Indeed, the
problem is to guess such appropriate invariants. In this paper, we present a
fully declarative and symbolic approach to the mechanization of backward
reachability of infinite state systems manipulating arrays by Satisfiability
Modulo Theories solving. Theories are used to specify the topology and the data
manipulated by the system. We identify sufficient conditions on the theories to
ensure the termination of backward reachability and we show the completeness of
a method for invariant synthesis (obtained as the dual of backward
reachability), again, under suitable hypotheses on the theories. We also
present a pragmatic approach to interleave invariant synthesis and backward
reachability so that a fix-point for the set of backward reachable states is
more easily obtained. Finally, we discuss heuristics that allow us to derive an
implementation of the techniques in the model checker MCMT, showing remarkable
speed-ups on a significant set of safety problems extracted from a variety of
sources.Comment: Accepted for publication in Logical Methods in Computer Scienc