11,182 research outputs found
The Elusive p-air Cross Section
For the \pbar p and systems, we have used all of the extensive data of
the Particle Data Group[K. Hagiwara {\em et al.} (Particle Data Group), Phys.
Rev. D 66, 010001 (2002).]. We then subject these data to a screening process,
the ``Sieve'' algorithm[M. M. Block, physics/0506010.], in order to eliminate
``outliers'' that can skew a fit. With the ``Sieve'' algorithm, a
robust fit using a Lorentzian distribution is first made to all of the data to
sieve out abnormally high \delchi, the individual i point's
contribution to the total . The fits are then made to the
sieved data. We demonstrate that we cleanly discriminate between asymptotic
and behavior of total hadronic cross sections when we require
that these amplitudes {\em also} describe, on average, low energy data
dominated by resonances. We simultaneously fit real analytic amplitudes to the
``sieved'' high energy measurements of and total cross sections
and -values for GeV, while requiring that their asymptotic
fits smoothly join the the and total cross
sections at 4.0 GeV--again {\em both} in magnitude and slope. Our
results strongly favor a high energy fit, basically excluding a fit. Finally, we make a screened Glauber fit for the p-air cross section,
using as input our precisely-determined cross sections at cosmic ray
energies.Comment: 15 pages, 6 figures, 2 table,Paper delivered at c2cr2005 Conference,
Prague, September 7-13, 2005. Fig. 2 was missing from V1. V3 fixes all
figure
Predicting Proton-Air Cross Sections at sqrt s ~30 TeV, using Accelerator and Cosmic Ray Data
We use the high energy predictions of a QCD-inspired parameterization of all
accelerator data on forward proton-proton and antiproton-proton scattering
amplitudes, along with Glauber theory, to predict proton-air cross sections at
energies near \sqrt s \approx 30 TeV. The parameterization of the proton-proton
cross section incorporates analyticity and unitarity, and demands that the
asymptotic proton is a black disk of soft partons. By comparing with the p-air
cosmic ray measurements, our analysis results in a constraint on the inclusive
particle production cross section.Comment: 9 pages, Revtex, uses epsfig.sty, 5 postscript figures. Minor text
revisions. Systematic errors in k included, procedure for extracting k
clarified. Previously undefined symbols now define
- …