37,566 research outputs found
Quantum gauge boson propagators in the light front
Gauge fields in the light front are traditionally addressed via the
employment of an algebraic condition in the Lagrangian density,
where is the gauge field (Abelian or non-Abelian) and is the
external, light-like, constant vector which defines the gauge proper. However,
this condition though necessary is not sufficient to fix the gauge completely;
there still remains a residual gauge freedom that must be addressed
appropriately. To do this, we need to define the condition with . The implementation of this
condition in the theory gives rise to a gauge boson propagator (in momentum
space) leading to conspicuous non-local singularities of the type where . These singularities must be conveniently
treated, and by convenient we mean not only matemathically well-defined but
physically sound and meaningfull as well. In calculating such a propagator for
one and two noncovariant gauge bosons those singularities demand from the
outset the use of a prescription such as the Mandelstam-Leibbrandt (ML) one. We
show that the implementation of the ML prescription does not remove certain
pathologies associated with zero modes. However we present a causal,
singularity-softening prescription and show how to keep causality from being
broken without the zero mode nuisance and letting only the propagation of
physical degrees of freedom.Comment: 10 page
Tensor interaction contributions to single-particle energies
We calculate the contribution of the nucleon-nucleon tensor interaction to
single-particle energies with finite-range matrix potentials and with
zero-range Skyrme potentials. The Skx Skyrme parameters including the
zero-range tensor terms with strengths calibrated to the finite-range results
are refitted to nuclear properties. The fit allows the zero-range
proton-neutron tensor interaction as calibrated to the finite-range potential
results and that gives the observed change in the single-particle gap
(h)-(g) going from Sn to
Sn. However, the experimental dependence of the spin-orbit
splittings in Sn and Pb is not well described when the tensor
is added, due to a change in the radial dependence of the total spin-orbit
potential. The gap shift and a good fit to the -dependence can be
recovered when the like-particle tensor interaction is opposite in sign to that
required for the matrix.Comment: 5 pages, 4 figures, accepted for publication as Rapid Communication
in Physical Review
A possible way to relate the "covariantization" and the negative dimensional integration methods in the light cone gauge
In this work we present a possible way to relate the method of covariantizing
the gauge dependent pole and the negative dimensional integration method for
computing Feynman integrals pertinent to the light-cone gauge fields. Both
techniques are applicable to the algebraic light-cone gauge and dispense with
prescriptions to treat the characteristic poles.Comment: 9 page
Neutrino Capture on C
We present neutrino cross sections on C. The charged-current cross
sections leading to various states in the daughter and the
neutral-current cross sections leading to various states in the daughter
C are given. We also provide simple polynomial fits to those cross
sections for quick estimates of the reaction rates. We briefly discuss possible
implications for the current and future scintillator-based experiments.Comment: 5 figure
QCD Phase Transition at Finite Temperature in the Dual Ginzburg-Landau Theory
We study the pure-gauge QCD phase transition at finite temperatures in the
dual Ginzburg-Landau theory, an effective theory of QCD based on the dual Higgs
mechanism. We formulate the effective potential at various temperatures by
introducing the quadratic source term, which is a new useful method to obtain
the effective potential in the negative-curvature region. Thermal effects
reduce the QCD-monopole condensate and bring a first-order deconfinement phase
transition. We find a large reduction of the self-interaction among
QCD-monopoles and the glueball masses near the critical temperature by
considering the temperature dependence of the self-interaction. We also
calculate the string tension at finite temperatures.Comment: 13 pages, uses PHYZZX ( 5 figures - available on request from
[email protected]
Causal Propagators for Algebraic Gauges
Applying the principle of analytic extension for generalized functions we
derive causal propagators for algebraic non-covariant gauges. The so generated
manifestly causal gluon propagator in the light-cone gauge is used to evaluate
two one-loop Feynman integrals which appear in the computation of the
three-gluon vertex correction. The result is in agreement with that obtained
through the usual prescriptions.Comment: LaTex, 09 pages, no figure
The Gamow-Teller States in Relativistic Nuclear Models
The Gamow-Teller(GT) states are investigated in relativistic models. The
Landau-Migdal(LM) parameter is introduced in the Lagrangian as a contact term
with the pseudo-vector coupling. In the relativistic model the total GT
strength in the nucleon space is quenched by about 12% in nuclear matter and by
about 6% in finite nuclei, compared with the one of the Ikeda-Fujii-Fujita sum
rule. The quenched amount is taken by nucleon-antinucleon excitations in the
time-like region. Because of the quenching, the relativistic model requires a
larger value of the LM parameter than non-relativistic models in describing the
excitation energy of the GT state. The Pauli blocking terms are not important
for the description of the GT states.Comment: REVTeX4, no figure
Surveillance on the light-front gauge fixing Lagrangians
In this work we propose two Lagrange multipliers with distinct coefficients
for the light-front gauge that leads to the complete (non-reduced) propagator.
This is accomplished via terms in the
Lagrangian density. These lead to a well-defined and exact though Lorentz non
invariant light front propagator.Comment: 7 pages. This is an improved version of hep-th/030406
- âŠ