363 research outputs found
Adaptive Optical Phase Estimation Using Time-Symmetric Quantum Smoothing
Quantum parameter estimation has many applications, from gravitational wave
detection to quantum key distribution. We present the first experimental
demonstration of the time-symmetric technique of quantum smoothing. We consider
both adaptive and non-adaptive quantum smoothing, and show that both are better
than their well-known time-asymmetric counterparts (quantum filtering). For the
problem of estimating a stochastically varying phase shift on a coherent beam,
our theory predicts that adaptive quantum smoothing (the best scheme) gives an
estimate with a mean-square error up to times smaller than that
from non-adaptive quantum filtering (the standard quantum limit). The
experimentally measured improvement is
Scoring tools to identify TB patients facing catastrophic costs in the Philippines.
BACKGROUND: This study was to meet a practical need to design a simple tool to identify TB patients who may potentially be facing catastrophic costs while seeking TB care in the public sector. Such a tool may help prevent and address catastrophic costs among individual patients. METHODS: We used data from the national TB patient cost survey in the Philippines. We randomly allocated TB patients to either the derivation or validation sample. Using adjusted odds ratios (ORs) and β coefficients of logistic regression, we developed four scoring systems to identify TB patients who may be facing catastrophic costs from the derivation sample. We validated each scoring system in the validation sample. RESULTS: We identified a total of 12 factors as predictive indicators associated with catastrophic costs. Using all 12 factors, the β coefficients-based scoring system (area under the curve [AUC] 0.783, 95% CI 0.754-0.812) had a high validity. Even with seven selected factors with OR > 2.0, the validity remained in the acceptable range (β coefficients-based: AUC 0.767, 95% CI 0.737-0.798). CONCLUSION: The β coefficients-based scoring systems in this analysis can be used to identify those at high risk of facing catastrophic costs due to TB in the Philippines. Operational feasibility needs to be investigated further to implement this in routine TB surveillance
G-type antiferromagnetism and orbital ordering due to the crystal field from the rare-earth ions induced by the GdFeO_3-type distortion in RTiO_3 with R=La, Pr, Nd and Sm
The origin of the antiferromagnetic order and puzzling properties of LaTiO_3
as well as the magnetic phase diagram of the perovskite titanates are studied
theoretically. We show that in LaTiO_3, the t_{2g} degeneracy is eventually
lifted by the La cations in the GdFeO_3-type structure, which generates a
crystal field with nearly trigonal symmetry. This allows the description of the
low-energy structure of LaTiO_3 by a single-band Hubbard model as a good
starting point. The lowest-orbital occupation in this crystal field stabilizes
the AFM(G) state, and well explains the spin-wave spectrum of LaTiO_3 obtained
by the neutron scattering experiment. The orbital-spin structures for RTiO_3
with R=Pr, Nd and Sm are also accounted for by the same mechanism. We point out
that through generating the R crystal field, the GdFeO_3-type distortion has a
universal relevance in determining the orbital-spin structure of the perovskite
compounds in competition with the Jahn-Teller mechanism, which has been
overlooked in the literature. Since the GdFeO_3-type distortion is a universal
phenomenon as is seen in a large number of perovskite compounds, this mechanism
may also play important roles in other compounds of this type.Comment: 20 pages, 15 figure
Visual onset expands subjective time
We report a distortion of subjective time perception in which the duration of a first interval is perceived to be longer than the succeeding interval of the same duration. The amount of time expansion depends on the onset type defining the first interval. When a stimulus appears abruptly, its duration is perceived to be longer than when it appears following a stationary array. The difference in the processing time for the stimulus onset and motion onset, measured as reaction times, agrees with the difference in time expansion. Our results suggest that initial transient responses for a visual onset serve as a temporal marker for time estimation, and a systematic change in the processing time for onsets affects perceived time
Nitric Oxide-Sensitive Guanylyl Cyclase Is Differentially Regulated by Nuclear and Non-Nuclear Estrogen Pathways in Anterior Pituitary Gland
17β-estradiol (E2) regulates hormonal release as well as proliferation and cell death in the pituitary. The main nitric oxide receptor, nitric oxide sensitive- or soluble guanylyl cyclase (sGC), is a heterodimer composed of two subunits, α and β, that catalyses cGMP formation. α1β1 is the most abundant and widely expressed heterodimer, showing the greater activity. Previously we have shown that E2 decreased sGC activity but exerts opposite effects on sGC subunits increasing α1 and decreasing β1 mRNA and protein levels. In the present work we investigate the mechanisms by which E2 differentially regulates sGC subunits' expression on rat anterior pituitary gland. Experiments were performed on primary cultures of anterior pituitary cells from adult female Wistar rats at random stages of estrous cycle. After 6 h of E2 treatment, α1 mRNA and protein expression is increased while β1 levels are down-regulated. E2 effects on sGC expression are partially dependent on de novo transcription while de novo translation is fully required. E2 treatment decreased HuR mRNA stabilization factor and increased AUF1 p37 mRNA destabilization factor. E2-elicited β1 mRNA decrease correlates with a mRNA destabilization environment in the anterior pituitary gland. On the other hand, after 6 h of treatment, E2-BSA (1 nM) and E2-dendrimer conjugate (EDC, 1 nM) were unable to modify α1 or β1 mRNA levels, showing that nuclear receptor is involved in E2 actions. However, at earlier times (3 h), 1 nM EDC causes a transient decrease of α1 in a PI3k-dependent fashion. Our results show for the first time that E2 is able to exert opposite actions in the anterior pituitary gland, depending on the activation of classical or non-classical pathways. Thus, E2 can also modify sGC expression through membrane-initiated signals bringing to light a new point of regulation in NO/sGC pathway
Reduction of PTEN protein and loss of epidermal growth factor receptor gene mutation in lung cancer with natural resistance to gefitinib (IRESSA)
Gefitinib (IRESSA), an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, has antitumour activity in the advanced non-small-cell lung cancer (NSCLC) setting. However, in chemotherapy-naïve patients with advanced NSCLC, the addition of gefitinib to standard chemotherapy regimens failed to increase survival. These results suggest the need for improved patient selection and combination rationales for targeted therapies. We have identified subpopulations of an adenocarcinoma cell line that are naturally resistant to gefitinib, and have analysed the cDNA expression profiles, genomic status of EGFR gene and the effect of gefitinib on signalling pathways in these cell lines in order to identify key mechanisms for naturally acquired resistance to gefitinib. Gefitinib-resistant subpopulations demonstrated increased Akt phosphorylation (not inhibited by gefitinib), reduced PTEN protein expression and loss of the EGFR gene mutation when compared with parental cell lines. These differences in Akt and PTEN protein expression were not evident from the cDNA array profiles. These data suggests that (1) the EGFR gene mutation may be possibly lost in some cancer cells with other additional mechanisms for activating Akt, (2) reintroduction of PTEN or pharmacological downregulation of the constitutive PI3K–Akt-pathway activity may be an attractive therapeutic strategy in cancers with gefitinib resistance
Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release
Colorectal carcinoma (CRC) is one of the most common causes of cancer-related mortality. Short-chain fatty acids secreted by
dietary propionibacteria from the intestine, such as acetate, induce apoptosis in CRC cells and may therefore be relevant in CRC
prevention and therapy. We previously reported that acetic acid-induced apoptosis in Saccharomyces cerevisiae cells involves
partial vacuole permeabilization and release of Pep4p, the yeast cathepsin D (CatD), which has a protective role in this process.
In cancer cells, lysosomes have emerged as key players in apoptosis through selective lysosomal membrane permeabilization
(LMP) and release of cathepsins. However, the role of CatD in CRC survival is controversial and has not been assessed in
response to acetate. We aimed to ascertain whether LMP and CatD are involved in acetate-induced apoptosis in CRC cells. We
showed that acetate per se inhibits proliferation and induces apoptosis. More importantly, we uncovered that acetate triggers
LMP and CatD release to the cytosol. Pepstatin A (a CatD inhibitor) but not E64d (a cathepsin B and L inhibitor) increased acetateinduced
apoptosis of CRC cells, suggesting that CatD has a protective role in this process. Our data indicate that acetate induces
LMP and subsequent release of CatD in CRC cells undergoing apoptosis, and suggest exploiting novel strategies using acetate
as a prevention/therapeutic agent in CRC, through simultaneous treatment with CatD inhibitors.This work was supported by the Fundação para a
Ciência e Tecnologia (FCT) research project PTDC/BIA-BCM/69448/2006 and FCT
PhD grants for SA (SFRH/BD/64695/2009) and CO (SFRH/BD/77449/2011). This
work was also supported by FEDER through POFC—COMPETE, and by national
funds from FCT through the project PEst-C/BIA/UI4050/2011
- …