255 research outputs found
Linear conductance in Coulomb-blockade quantum dots in the presence of interactions and spin
We discuss the calculation of the linear conductance through a
Coulomb-blockade quantum dot in the presence of interactions beyond the
charging energy. In the limit where the temperature is large compared with a
typical tunneling width, we use a rate-equations approach to describe the
transitions between the corresponding many-body states. We discuss both the
elastic and rapid-thermalization limits, where the rate of inelastic scattering
in the dot is either small or large compared with the elastic transition rate,
respectively. In the elastic limit, we find several cases where a closed
solution for the conductance is possible, including the case of a constant
exchange interaction. In the rapid-thermalization limit, a closed solution is
possible in the general case. We show that the corresponding expressions for
the linear conductance simplify for a Hamiltonian that is invariant under spin
rotations.Comment: 11 pages, no figures, revtex
Anomalous Enhancement of the Boltzmann Conductivity in Disordered Zigzag Graphene Nanoribbons
We study the conductivity of disordered zigzag graphene nanoribbons in the
incoherent regime by using the Boltzmann equation approach. The band structure
of zigzag nanoribbons contains two energy valleys, and each valley has an
excess one-way channel. The crucial point is that the numbers of conducting
channels for two propagating directions are imbalanced in each valley due to
the presence of an excess one-way channel. It was pointed out that as a
consequence of this imbalance, a perfectly conducting channel is stabilized in
the coherent regime if intervalley scattering is absent. We show that even in
the incoherent regime, the conductivity is anomalously enhanced if intervalley
scattering is very weak. Particularly, in the limit of no intervalley
scattering, the dimensionless conductance approaches to unity with increasing
ribbon length as if there exists a perfectly conducting channel. We also show
that anomalous valley polarization of electron density appears in the presence
of an electric field.Comment: 10 pages, 3 figure
Aharonov-Bohm Effect for Parallel and T-shaped Double Quantum Dots
We investigate the Aharonov-Bohm (AB) effect for the double quantum dots in
the Kondo regime using the slave-boson mean-field approximation. In contrast to
the non-interacting case, where the AB oscillation generally has the period of
4 when the two-subring structure is formed via the interdot tunneling
, we find that the AB oscillation has the period of 2 in the Kondo
regime. Such effects appear for the double quantum dots close to the T-shaped
geometry even in the charge-fluctuation regime. These results follow from the
fact that the Kondo resonance is always fixed to the Fermi level irrespective
of the detailed structure of the bare dot-levels.Comment: 3 pages, 4 figures; minor change
Thermohydrodynamics in Quantum Hall Systems
A theory of thermohydrodynamics in two-dimensional electron systems in
quantizing magnetic fields is developed including a nonlinear transport regime.
Spatio-temporal variations of the electron temperature and the chemical
potential in the local equilibrium are described by the equations of
conservation with the number and thermal-energy flux densities. A model of
these flux densities due to hopping and drift processes is introduced for a
random potential varying slowly compared to both the magnetic length and the
phase coherence length. The flux measured in the standard transport experiment
is derived and is used to define a transport component of the flux density. The
equations of conservation can be written in terms of the transport component
only. As an illustration, the theory is applied to the Ettingshausen effect, in
which a one-dimensional spatial variation of the electron temperature is
produced perpendicular to the current.Comment: 10 pages, 1 figur
Evidence of Spin-Filtering in Quantum Constrictions with Spin-Orbit Interaction
A new type of blockade effect - spin-orbit blockade (SOB) - is found in the
conduction of a quantum dot (QD) made of a material with spin-orbit
interaction. The blockade arises from spin-filtering effect in a quantum point
contact (QPC), which is a component of the QD. Hence the appearance of the
blockade itself evidences the spin-filtering effect in the QPC. The lower bound
of filtering efficiency is estimated to be above 80%.Comment: 4 pages, 4 figure
Self-consistent local-equilibrium model for density profile and distribution of dissipative currents in a Hall bar under strong magnetic fields
Recent spatially resolved measurements of the electrostatic-potential
variation across a Hall bar in strong magnetic fields, which revealed a clear
correlation between current-carrying strips and incompressible strips expected
near the edges of the Hall bar, cannot be understood on the basis of existing
equilibrium theories. To explain these experiments, we generalize the
Thomas-Fermi--Poisson approach for the self-consistent calculation of
electrostatic potential and electron density in {\em total} thermal equilibrium
to a {\em local equilibrium} theory that allows to treat finite gradients of
the electrochemical potential as driving forces of currents in the presence of
dissipation. A conventional conductivity model with small values of the
longitudinal conductivity for integer values of the (local) Landau-level
filling factor shows that, in apparent agreement with experiment, the current
density is localized near incompressible strips, whose location and width in
turn depend on the applied current.Comment: 9 pages, 7 figure
Many Body Effects on Electron Tunneling through Quantum Dots in an Aharonov-Bohm Circuit
Tunneling conductance of an Aharonov-Bohm circuit including two quantum dots
is calculated based on the general expression of the conductance in the linear
response regime of the bias voltage. The calculation is performed in a wide
temperature range by using numerical renormalization group method. Various
types of AB oscillations appear depending on the temperature and the potential
depth of the dots. Especially, AB oscillations have strong higher harmonics
components as a function of the magnetic flux when the potential of the dots is
deep. This is related to the crossover of the spin state due to the Kondo
effect on quantum dots. When the temperature rises up, the amplitude of the AB
oscillations becomes smaller reflecting the breaking of the coherency.Comment: 21 pages, 11 PostScript figures, LaTeX, uses jpsj.sty epsbox.st
Aharonov-Bohm interferometry with quantum dots: scattering approach versus tunneling picture
We address the question of how to model electron transport through closed
Aharonov-Bohm interferometers which contain quantum dots. By explicitly
studying interferometers with one and two quantum dots, we establish the
connection between a tunneling-Hamiltonian formulation on the one hand and a
scattering-matrix approach on the other hand. We prove that, under certain
circumstances, both approaches are equivalent, i.e., both types of models can
describe the same experimental setups. Furthermore, we analyze how the
interplay of the Aharonov-Bohm phase and the orbital phase associated with the
lengths of the interferometers' arms affect transport properties.Comment: 8 pages, 8 figures, published versio
Low-Temperature Specific Heat of an Extreme-Type-II Superconductor at High Magnetic Fields
We present a detailed study of the quasiparticle contribution to the
low-temperature specific heat of an extreme type-II superconductor at high
magnetic fields. Within a T-matrix approximation for the self-energies in the
mixed state of a homogeneous superconductor, the electronic specific heat is a
linear function of temperature with a linear- coefficient
being a nonlinear function of magnetic field . In the range of magnetic
fields H\agt (0.15-0.2)H_{c2} where our theory is applicable, the calculated
closely resembles the experimental data for the borocarbide
superconductor YNiBC.Comment: 7 pages, 2 figures, to appear in Physical Review
Ginzburg-Landau-Gor'kov Theory of Magnetic oscillations in a type-II 2-dimensional Superconductor
We investigate de Haas-van Alphen (dHvA) oscillations in the mixed state of a
type-II two-dimensional superconductor within a self-consistent Gor'kov
perturbation scheme. Assuming that the order parameter forms a vortex lattice
we can calculate the expansion coefficients exactly to any order. We have
tested the results of the perturbation theory to fourth and eight order against
an exact numerical solution of the corresponding Bogoliubov-de Gennes
equations. The perturbation theory is found to describe the onset of
superconductivity well close to the transition point . Contrary to
earlier calculations by other authors we do not find that the perturbative
scheme predicts any maximum of the dHvA-oscillations below . Instead we
obtain a substantial damping of the magnetic oscillations in the mixed state as
compared to the normal state. We have examined the effect of an oscillatory
chemical potential due to particle conservation and the effect of a finite
Zeeman splitting. Furthermore we have investigated the recently debated issue
of a possibility of a sign change of the fundamental harmonic of the magnetic
oscillations. Our theory is compared with experiment and we have found good
agreement.Comment: 39 pages, 8 figures. This is a replacement of supr-con/9608004.
Several sections changed or added, including a section on the effect of spin
and the effect of a conserved number of particles. To be published in Phys.
Rev.
- …