44,109 research outputs found
Stray field and superconducting surface spin valve effect in LaCaMnO/YBaCuO bilayers
Electronic transport and magnetization measurements were performed on
LaCaMnO/YBaCuO (LCMO/YBCO) bilayers
below the superconducting transition temperature in order to study the
interaction between magnetism and superconductivity. This study shows that a
substantial number of weakly pinned vortices are induced in the YBCO layer by
the large out-of-plane stray field in the domain walls. Their motion gives rise
to large dissipation peaks at the coercive field. The angular dependent
magnetoresistance (MR) data reveal the interaction between the stripe domain
structure present in the LCMO layer and the vortices and anti-vortices induced
in the YBCO layer by the out-of-plane stray field. In addition, this study
shows that a superconducting surface spin valve effect is present in these
bilayers as a result of the relative orientation between the magnetization at
the LCMO/YBCO interface and the magnetization in the interior of the LCMO layer
that can be tuned by the rotation of a small . This latter finding will
facilitate the development of superconductive magnetoresistive memory devices.
These low-magnetic field MR data, furthermore, suggest that triplet
superconductivity is induced in the LCMO layer, which is consistent with recent
reports of triplet superconductivity in LCMO/YBCO/LCMO trilayers and LCMO/YBCO
bilayers.Comment: 14 pages, 3 figure
Anomalous Paramagnetic Magnetization in Mixed State of CeCoIn single crystals
Magnetization and torque measurements were performed on CeCoIn single
crystals to study the mixed-state thermodynamics. These measurements allow the
determination of both paramagnetic and vortex responses in the mixed-state
magnetization. The paramagnetic magnetization is suppressed in the mixed state
with the spin susceptibility increasing with increasing magnetic field. The
dependence of spin susceptibility on magnetic field is due to the fact that
heavy electrons contribute both to superconductivity and paramagnetism and a
large Zeeman effect exists in this system. No anomaly in the vortex response
was found within the investigated temperature and field range
Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems
Surface impedance is an important concept in classical wave systems such as
photonic crystals (PCs). For example, the condition of an interface state
formation in the interfacial region of two different one-dimensional PCs is
simply Z_SL +Z_SR=0, where Z_SL (Z_SR)is the surface impedance of the
semi-infinite PC on the left- (right-) hand side of the interface. Here, we
also show a rigorous relation between the surface impedance of a
one-dimensional PC and its bulk properties through the geometrical (Zak) phases
of the bulk bands, which can be used to determine the existence or
non-existence of interface states at the interface of the two PCs in a
particular band gap. Our results hold for any PCs with inversion symmetry,
independent of the frequency of the gap and the symmetry point where the gap
lies in the Brillouin Zone. Our results provide new insights on the
relationship between surface scattering properties, the bulk band properties
and the formation of interface states, which in turn can enable the design of
systems with interface states in a rational manner
Coexistence of Localized and Extended States in Disordered Systems
It is commonly believed that Anderson localized states and extended states do
not coexist at the same energy. Here we propose a simple mechanism to achieve
the coexistence of localized and extended states in a band in a class of
disordered quasi-1D and quasi-2D systems. The systems are partially disordered
in a way that a band of extended states always exists, not affected by the
randomness, whereas the states in all other bands become localized. The
extended states can overlap with the localized states both in energy and in
space, achieving the aforementioned coexistence. We demonstrate such
coexistence in disordered multi-chain and multi-layer systems.Comment: 5 pages, 3 figure
Pairing Symmetry of CeCoIn Detected by In-plane Torque Measurements
In-plane torque measurements were performed on heavy fermion CeCoIn
single crystals in the temperature range 1.8 K K and
applied magnetic field up to 14 T. The normal-state torque is given by
. The reversible part of the
mixed-state torque, obtained after subtracting the corresponding normal state
torque, shows also a four-fold symmetry. In addition, sharp peaks are present
in the irreversible torque at angles of 4, 3/4, 5/4, 7/4,
etc. Both the four-fold symmetry in the reversible torque and the sharp peaks
in the irreversible torque of the mixed state imply symmetry of the
superconducting order parameter. The field and temperature dependences of the
reversible mixed-state torque provide further evidence for wave
symmetry. The four-fold symmetry in the normal state has a different origin
since it has different field and temperature dependences than the one in the
mixed state. The possible reasons of the normal state four-fold symmetry are
discussed
Baryon states with open charm in the extended local hidden gauge approach
In this paper we examine the interaction of and states,
together with their coupled channels, by using an extension of the local hidden
gauge formalism from the light meson sector, which is based on heavy quark spin
symmetry. The scheme is based on the use of the impulse approximation at the
quark level, with the heavy quarks acting as spectators, which occurs for the
dominant terms where there is the exchange of a light meson. The pion exchange
and the Weinberg-Tomozawa interactions are generalized and with this dynamics
we look for states generated from the interaction, with a unitary coupled
channels approach that mixes the pseudoscalar-baryon and vector-baryon states.
We find two states with nearly zero width which are associated to the
and . The lower state, with ,
couples to and , and the second one, with , to . In addition to these two states, we find four more states with
, one of them nearly degenerate in two states of .
Furthermore we find three states in , two of them degenerate in .Comment: v3: version to appear in Eur.Phys.J.
Description of as a system with the fixed center approximation
We study the system with an aim to describe the
resonance. The chiral unitary approach has achieved success in a description of
systems of the light hadron sector. With this method, the system in
the isospin sector , is found to be a dominant component of the resonance. Therefore, by regarding the system as a cluster,
the resonance, we evaluate the system applying the
fixed center approximation to the Faddeev equations. We construct the
unitarized amplitude using the chiral unitary approach. As a result, we find a
peak in the three-body amplitude around 1739 MeV and a width of about 227 MeV.
The effect of the width of and is also discussed. We
associate this peak to the which has a mass of MeV
and a width of MeV
- …