5,704 research outputs found

    Wald's entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling

    Full text link
    The Bekenstein-Hawking entropy of black holes in Einstein's theory of gravity is equal to a quarter of the horizon area in units of Newton's constant. Wald has proposed that in general theories of gravity the entropy of stationary black holes with bifurcate Killing horizons is a Noether charge which is in general different from the Bekenstein-Hawking entropy. We show that the Noether charge entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling on the horizon defined by the coefficient of the kinetic term of specific graviton polarizations on the horizon. We present several explicit examples of static spherically symmetric black holes.Comment: 20 pages ; added clarifications, explanations, new section on the choice of polarizations, results unchanged; replaced with published versio

    Lindblad dynamics of the quantum spherical model

    Full text link
    The purely relaxational non-equilibrium dynamics of the quantum spherical model as described through a Lindblad equation is analysed. It is shown that the phenomenological requirements of reproducing the exact quantum equilibrium state as stationary solution and the associated classical Langevin equation in the classical limit g0g\to 0 fix the form of the Lindblad dissipators, up to an overall time-scale. In the semi-classical limit, the models' behaviour become effectively the one of the classical analogue, with a dynamical exponent z=2z=2, and an effective temperature TeffT_{\rm eff}, renormalised by the quantum coupling gg. A distinctive behaviour is found for a quantum quench, at zero temperature, deep into the ordered phase ggc(d)g\ll g_c(d), for d>1d>1 dimensions. Only for d=2d=2 dimensions, a simple scaling behaviour holds true, with a dynamical exponent z=1z=1, while for dimensions d2d\ne 2, logarithmic corrections to scaling arise. The spin-spin correlator, the growing length scale and the time-dependent susceptibility show the existence of several logarithmically different length scales.Comment: 61 pages, 14 figure

    Control of black hole evaporation?

    Get PDF
    Contradiction between Hawking's semi-classical arguments and string theory on the evaporation of black hole has been one of the most intriguing problems in fundamental physics. A final-state boundary condition inside the black hole was proposed by Horowitz and Maldacena to resolve this contradiction. We point out that original Hawking effect can be also regarded as a separate boundary condition at the event horizon for this scenario. Here, we found that the change of Hawking boundary condition may affect the information transfer from the initial collapsing matter to the outgoing Hawking radiation during evaporation process and as a result the evaporation process itself, significantly.Comment: Journal of High Energy Physics, to be publishe

    Newtonian and Relativistic Cosmologies

    Full text link
    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic FLRW cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed, which allows for such nonlinearity at small scales. We propose a relatively straightforward "dictionary"---which is exact at the linearized level---that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our "ordering scheme" to determine the degree to which the resulting metric and matter distribution solve Einstein's equation. We find that Einstein's equation fails to hold at "order 1" at small scales and at "order ϵ\epsilon" at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein's equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations to describe relativistic cosmologies, even on scales larger than the Hubble radius.Comment: 35 pages; minor change

    Axisymmetric stationary solutions with arbitrary multipole moments

    Get PDF
    In this paper, the problem of finding an axisymmetric stationary spacetime from a specified set of multipole moments, is studied. The condition on the multipole moments, for existence of a solution, is formulated as a convergence condition on a power series formed from the multipole moments. The methods in this paper can also be used to give approximate solutions to any order as well as estimates on each term of the resulting power series.Comment: 12 page

    Hawking Radiation in the Ghost Condensate is Non-Thermal

    Full text link
    We consider a Schwarzschild black hole immersed in a ghost condensate background. It is shown that the Hawking radiation in the quanta of small perturbations around this background is highly suppressed- in particular it is not given by a thermal spectrum. This result is in accord with observations that such black holes can be used to violate the generalized second law of thermodynamics, and thus cannot have a standard entropy/area relation.Comment: 26 pages; v2: reference added, missing Christoffel symbols included in appendix, minor typos corrected in equations (39) and (50

    Development of single crystal beta-alumina membrane

    Get PDF
    Feasibility of crystal growth technique for beta alumina membrane from molybdenum, tungsten, and iridiu
    corecore