36,137 research outputs found

    Membranoproliferative glomerulonephritis in patients with chronic venous catheters: a case report and literature review.

    Get PDF
    Chronic indwelling catheters have been reported to be associated with membranoproliferative glomerulonephritis (MPGN) via the activation of the classical complement pathway in association with bacterial infections such as coagulase negative staphylococcus. We herein provide supporting evidence for the direct causal relationship between chronic catheter infections and MPGN via a case of recurrent MPGN associated with recurrent catheter infections used for total parenteral nutrition (TPN) in a man with short gut syndrome. We also present a literature review of similar cases and identify common clinical manifestations that may serve to aid clinicians in the early identification of MPGN associated with infected central venous catheterization or vice versa. The importance of routine monitoring of kidney function and urinalysis among patients with chronic central venous catheterization is highlighted as kidney injury may herald or coincide with overtly infected chronic indwelling central venous catheters

    Neutron star cooling - a challenge to the nuclear mean field

    Full text link
    The two recent density-dependent versions of the finite-range M3Y interaction (CDM3Ynn and M3Y-Pnn) have been probed against the bulk properties of asymmetric nuclear matter (NM) in the nonrelativistic Hartree Fock (HF) formalism. The same HF study has also been done with the famous Skyrme (SLy4) and Gogny (D1S and D1N) interactions which were well tested in the nuclear structure calculations. Our HF results are compared with those given by other many-body calculations like the Dirac-Brueckner Hartree-Fock approach or ab-initio variational calculation using free nucleon-nucleon interaction, and by both the nonrelativistic and relativistic mean-field studies using different model parameters. Although the two considered density-dependent versions of the M3Y interaction were proven to be quite realistic in the nuclear structure or reaction studies, they give two distinct behaviors of the NM symmetry energy at high densities, like the Asy-soft and Asy-stiff scenarios found earlier with other mean-field interactions. As a consequence, we obtain two different behaviors of the proton fraction in the β\beta-equilibrium which in turn can imply two drastically different mechanisms for the neutron star cooling. While some preference of the Asy-stiff scenario was found based on predictions of the latest microscopic many-body calculations or empirical NM pressure and isospin diffusion data deduced from heavy-ion collisions, a consistent mean-field description of nuclear structure database is more often given by some Asy-soft type interaction like the Gogny or M3Y-Pnn ones. Such a dilemma poses an interesting challenge to the modern mean-field approaches.Comment: Version accepted for publication in Phys. Rev.

    Isospin dependence of 6He+p optical potential and the symmetry energy

    Full text link
    A consistent folding analysis of the elastic p(6He,6He)p scattering and charge exchange p(6He,6Li*)n reaction data measured at Elab=41.6A MeV has been performed within the coupled channels formalism. We have used the isovector coupling to link the isospin dependence of 6He+p optical potential to the cross section of p(6He,6Li*)n reaction exciting the 0+ isobaric analog state (IAS) at 3.563 MeV in 6Li. Based on these results and the Hartree-Fock calculation of asymmetric nuclear matter using the same isospin-dependent effective nucleon-nucleon interaction, we were able to confirm that the most realistic value of the symmetry energy Esym is around 31 MeV. Our analysis has also shown that the measured charge exchange p(6He,6Li*)n data are quite sensitive to the halo tail of the 6He density used in the folding calculation and the IAS of 6Li is likely to have a halo structure similar to that established for the ground state of 6He.Comment: Accepted for publication in Phys. Rev.

    Higgs Physics at the Large Hadron Collider

    Get PDF
    In this talk I will begin by summarising the importance of the Higgs physics studies at the LHC. I will then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with prospects in the near future at the LHC. In addition to the material covered in the presented talk, I have included in the writeup, a critical appraisal of the theoretical uncertainties in the Higgs cross-sections at the Tevatron as well as a discussion of the recent experimental results from the LHC which have become available since the time of the workshop.Comment: LateX, 12 figures, 15 pages, Presented at the XIth Workshop on High Energy Physics Phenomenology, 2010, Ahmedabad, Indi

    The use of variable pulse width frequency double Neodymium: YAG 532 nm laser in the treatment of port wine stain in Chinese

    Get PDF
    published_or_final_versio

    Compressible primitive equation: formal derivation and stability of weak solutions

    Get PDF
    We present a formal derivation of a simplified version of Compressible Primitive Equations (CPEs) for atmosphere modeling. They are obtained from 33-D compressible Navier-Stokes equations with an \emph{anisotropic viscous stress tensor} where viscosity depends on the density. We then study the stability of the weak solutions of this model by using an intermediate model, called model problem, which is more simple and practical, to achieve the main result
    corecore