36,137 research outputs found
Membranoproliferative glomerulonephritis in patients with chronic venous catheters: a case report and literature review.
Chronic indwelling catheters have been reported to be associated with membranoproliferative glomerulonephritis (MPGN) via the activation of the classical complement pathway in association with bacterial infections such as coagulase negative staphylococcus. We herein provide supporting evidence for the direct causal relationship between chronic catheter infections and MPGN via a case of recurrent MPGN associated with recurrent catheter infections used for total parenteral nutrition (TPN) in a man with short gut syndrome. We also present a literature review of similar cases and identify common clinical manifestations that may serve to aid clinicians in the early identification of MPGN associated with infected central venous catheterization or vice versa. The importance of routine monitoring of kidney function and urinalysis among patients with chronic central venous catheterization is highlighted as kidney injury may herald or coincide with overtly infected chronic indwelling central venous catheters
Neutron star cooling - a challenge to the nuclear mean field
The two recent density-dependent versions of the finite-range M3Y interaction
(CDM3Y and M3Y-P) have been probed against the bulk properties of
asymmetric nuclear matter (NM) in the nonrelativistic Hartree Fock (HF)
formalism. The same HF study has also been done with the famous Skyrme (SLy4)
and Gogny (D1S and D1N) interactions which were well tested in the nuclear
structure calculations. Our HF results are compared with those given by other
many-body calculations like the Dirac-Brueckner Hartree-Fock approach or
ab-initio variational calculation using free nucleon-nucleon interaction, and
by both the nonrelativistic and relativistic mean-field studies using different
model parameters. Although the two considered density-dependent versions of the
M3Y interaction were proven to be quite realistic in the nuclear structure or
reaction studies, they give two distinct behaviors of the NM symmetry energy at
high densities, like the Asy-soft and Asy-stiff scenarios found earlier with
other mean-field interactions. As a consequence, we obtain two different
behaviors of the proton fraction in the -equilibrium which in turn can
imply two drastically different mechanisms for the neutron star cooling. While
some preference of the Asy-stiff scenario was found based on predictions of the
latest microscopic many-body calculations or empirical NM pressure and isospin
diffusion data deduced from heavy-ion collisions, a consistent mean-field
description of nuclear structure database is more often given by some Asy-soft
type interaction like the Gogny or M3Y-P ones. Such a dilemma poses an
interesting challenge to the modern mean-field approaches.Comment: Version accepted for publication in Phys. Rev.
Isospin dependence of 6He+p optical potential and the symmetry energy
A consistent folding analysis of the elastic p(6He,6He)p scattering and
charge exchange p(6He,6Li*)n reaction data measured at Elab=41.6A MeV has been
performed within the coupled channels formalism. We have used the isovector
coupling to link the isospin dependence of 6He+p optical potential to the cross
section of p(6He,6Li*)n reaction exciting the 0+ isobaric analog state (IAS) at
3.563 MeV in 6Li. Based on these results and the Hartree-Fock calculation of
asymmetric nuclear matter using the same isospin-dependent effective
nucleon-nucleon interaction, we were able to confirm that the most realistic
value of the symmetry energy Esym is around 31 MeV. Our analysis has also shown
that the measured charge exchange p(6He,6Li*)n data are quite sensitive to the
halo tail of the 6He density used in the folding calculation and the IAS of 6Li
is likely to have a halo structure similar to that established for the ground
state of 6He.Comment: Accepted for publication in Phys. Rev.
Recommended from our members
Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures
A key feature of two-dimensional materials is that the sign and concentration of their carriers can be externally controlled with techniques such as electrostatic gating. However, conventional electrostatic gating has limitations, including a maximum carrier density set by the dielectric breakdown, and ionic liquid gating and direct chemical doping also suffer from drawbacks. Here, we show that an electron-beam-induced doping technique can be used to reversibly write high-resolution doping patterns in hexagonal boron nitride-encapsulated graphene and molybdenum disulfide (MoS2) van der Waals heterostructures. The doped MoS2 device exhibits an order of magnitude decrease of subthreshold swing compared with the device before doping, whereas the doped graphene devices demonstrate a previously inaccessible regime of high carrier concentration and high mobility, even at room temperature. We also show that the approach can be used to write high-quality p–n junctions and nanoscale doping patterns, illustrating that the technique can create nanoscale circuitry in van der Waals heterostructures
Higgs Physics at the Large Hadron Collider
In this talk I will begin by summarising the importance of the Higgs physics
studies at the LHC. I will then give a short description of the pre-LHC
constraints on the Higgs mass and the theoretical predictions for the LHC along
with a discussion of the current experimental results, ending with prospects in
the near future at the LHC. In addition to the material covered in the
presented talk, I have included in the writeup, a critical appraisal of the
theoretical uncertainties in the Higgs cross-sections at the Tevatron as well
as a discussion of the recent experimental results from the LHC which have
become available since the time of the workshop.Comment: LateX, 12 figures, 15 pages, Presented at the XIth Workshop on High
Energy Physics Phenomenology, 2010, Ahmedabad, Indi
Recommended from our members
Epidermal growth factor receptor variant III mediates head and neck cancer cell invasion via STAT3 activation.
Epidermal growth factor receptor (EGFR) is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC) where aberrant signaling downstream of this receptor contributes to tumor growth. EGFR variant III (EGFRvIII) is the most commonly altered form of EGFR and contains a truncated ligand-binding domain. We previously reported that EGFRvIII is expressed in up to 40% of HNSCC tumors where it is associated with increased proliferation, tumor growth and chemoresistance to antitumor drugs including the EGFR-targeting monoclonal antibody cetuximab. Cetuximab was FDA-approved in 2006 for HNSCC but has not been shown to prevent invasion or metastasis. This study was undertaken to evaluate the mechanisms of EGFRvIII-mediated cell motility and invasion in HNSCC. We found that EGFRvIII induced HNSCC cell migration and invasion in conjunction with increased signal transducer and activator of transcription 3 (STAT3) activation, which was not abrogated by cetuximab treatment. Further investigation showed that EGF-induced expression of the STAT3 target gene HIF1-α, was abolished by cetuximab in HNSCC cells expressing wild-type EGFR under hypoxic conditions, but not in EGFRvIII-expressing HNSCC cells. These results suggest that EGFRvIII mediates HNSCC cell migration and invasion by increased STAT3 activation and induction of HIF1-α, which contribute to cetuximab resistance in EGFRvIII-expressing HNSCC tumors
The use of variable pulse width frequency double Neodymium: YAG 532 nm laser in the treatment of port wine stain in Chinese
published_or_final_versio
Compressible primitive equation: formal derivation and stability of weak solutions
We present a formal derivation of a simplified version of Compressible
Primitive Equations (CPEs) for atmosphere modeling. They are obtained from
-D compressible Navier-Stokes equations with an \emph{anisotropic viscous
stress tensor} where viscosity depends on the density. We then study the
stability of the weak solutions of this model by using an intermediate model,
called model problem, which is more simple and practical, to achieve the main
result
Recommended from our members
Spatial and temporal variations of aerosols around Beijing in summer 2006: Model evaluation and source apportionment
Regional aerosol model calculations were made using the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) and WRF-chem models to study spatial and temporal variations of aerosols around Beijing, China, in the summer of 2006, when the Campaigns of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing) intensive campaign was conducted. Model calculations captured temporal variations of primary (such as elemental carbon. (EC)) and secondary (such as sulfate) aerosols observed in and around Beijing. The spatial distributions of aerosol optical depth observed by the MODTS satellite sensors were also reproduced over northeast China. Model calculations showed distinct differences in spatial distributions between primary and secondary aerosols in association with synoptic-scale meteorology. Secondary aerosols increased in air around Beijing on a scale of about 1000 × 1000 km2 under an anticyclonic pressure system. This air mass was transported northward from the high anthropogenic emission area extending south of Beijing with continuous photochemical production. Subsequent cold front passage brought clean air from the north, and polluted air around Beijing was swept to the south of Beijing. This cycle was repeated about once a week and was found to be responsible for observed enhancements/reductions of aerosols at the intensive measurement sites. In contrast to secondary aerosols, the spatial distributions of primary aerosols (EC) reflected those of emissions, resulting in only slight variability despite the changes in synopticscale meteorology. In accordance with these results, source apportionment simulations revealed that primary aerosols around Beijing were controlled by emissions within 100 km around Beijing within the preceding 24 h, while emissions as far as 500 km and within the preceding 3 days were found to affect secondary aerosols. Copyright 2009 by the American Geophysical Union
- …
