16 research outputs found

    Changes in organic compounds secreted by roots in two Poaceae species (Hordeum vulgare and Polypogon monspenliensis) subjected to iron deficiency

    No full text
    Despite their economic and ecological interests, Poaceae are affected by the low availability of iron in calcareous soils. Several studies focused on the capacity of this family to secrete phytosiderophores and organic acids as a mechanism of tolerance to iron deficiency. This work aimed at studying the physiological responses of two Poaceae species; Hordeum vulgare (cultivated barley) and Polypogon monspenliensis (spontaneous species) to iron deficiency, and evaluate especially the release of phytosiderophores and organic acids. For this purpose, seedlings of these two species were cultivated in complete nutrient solution with or without iron. The biomass production, iron status, phytosiderophores and organic acids release by roots were studied. The results demonstrated that Polypogon monspenliensis was relatively more tolerant to iron deficiency than Hordeum vulgare. Polypogon monspenliensis had the ability to secrete a higher amount of phytosiderophores and organic acids, especially citric, acetic, oxalic and malic acids, compared to Hordeum vulgare. We propose this spontaneous species as a forage plant in calcareous soils and in intercropping systems with fruit trees to prevent iron chlorosis

    Deficit Irrigation of Cereals and Horticultural Crops: Simulation of Strategies to Cope with Droughts

    Full text link
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a Technical article from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 3 (2001): P. N. Rodrigues, L. S. Pereira, A. Zairi, H. El Amami, H. A. Slatni, J. L. Teixeira, and T. Machado. Deficit Irrigation of Cereals and Horticultural Crops: Simulation of Strategies to Cope with Droughts. Vol. III, March 2001

    Root Proliferation, Proton Efflux, and Acid Phosphatase Activity in Common Bean (Phaseolus vulgaris) Under Phosphorus Shortage

    No full text
    Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699International audienceThe impact of phosphorus (P) availability on root proliferation, proton efflux, and acid phosphatase activities in roots and leaves was investigated in two lines of common bean (Phaseolus vulgaris): BAT 477 and CocoT. Phosphorus was supplied as KH(2)PO(4) at 0 and 60 A mu mol per plant (0P and 60P, respectively). Under P shortage, the plant growth was more restricted in CocoT than in BAT 477, shoots being more affected than roots. The root area increased significantly at 0P in both lines. Up to 1 week following P shortage, the proton efflux increased in both lines despite a higher extent in BAT 477 as compared to CocoT. Root acid phosphatase activity was significantly higher under P limitation in the both lines, this trend being more pronounced in BAT 477 than in CocoT. This was also true for the leaf acid phosphatase. Regardless of the bean line, higher values were recorded for the old leaves as compared to the young ones for this parameter. Interestingly, a significant correlation between Pi content in old leaves and their acid phosphatase activity was found in P-lacking (0P) plants of the both bean lines, suggesting that acid phosphatase may contribute to increase the phosphorus use efficiency in bean through the P remobilization from the old leaves. As a whole, our results highlight the significance of the root H(+) extrusion and the acid phosphatase activity rather than the root proliferation in the relative tolerance of BAT 477 to severe P deficiency

    Immunolocalization of H+-ATPase and IRT1 enzymes in N2-fixing common bean nodules subjected to iron deficiency

    No full text
    The demand for iron in leguminous plants increases during symbiosis, as the metal is utilised for the synthesis of various Fe-containing proteins in both plant and bacteroids. However, the acquisition of this micronutrient is problematic due to its low bioavailability at physiological pH under aerobic conditions. Induction of root Fe(III)-reductase activity is necessary for Fe uptake and can be coupled to the rhizosphere acidification capacity linked to the H +-ATPase activity. Fe uptake is related to the expression of a Fe 2+ transporter (IRT1). In order to verify the possible role of nodules in the acquisition of Fe directly from the soil solution, the localization of H +-ATPase and IRT1 was carried out in common bean nodules by immuno-histochemical analysis. The results showed that these proteins were particularly abundant in the central nitrogen-fixing zone of nodules, around the periphery of infected and uninfected cells as well as in the vascular bundle of control nodules. Under Fe deficiency an over-accumulation of H +-ATPase and IRT1 proteins was observed especially around the cortex cells of nodules. The results obtained in this study suggest that the increase in these proteins is differentially localized in nodules of Fe-deficient plants when compared to the Fe-sufficient condition and cast new light on the possible involvement of nodules in the direct acquisition of Fe from the nutrient solution

    Metabolic changes of iron uptake in N2_fixing common bean nodules during iron deficiency

    No full text
    Iron is an important nutrient in N 2-fixing legume nodules. The demand for this micronutrient increases during the symbiosis establishment, where the metal is utilized for the synthesis of various iron-containing proteins in both the plant and the bacteroid. Unfortunately, in spite of its importance, iron is poorly available to plant uptake since its solubility is very low when in its oxidized form Fe(III). In the present study, the effect of iron deficiency on the activity of some proteins involved in Strategy I response, such as Fe-chelate reductase (FC-R), H +-ATPase, and phosphoenolpyruvate carboxylase (PEPC) and the protein level of iron regulated transporter (IRT1) and H +-ATPase proteins has been investigated in both roots and nodules of a tolerant (Flamingo) and a susceptible (Coco blanc) cultivar of common bean plants. The main results of this study show that the symbiotic tolerance of Flamingo can be ascribed to a greater increase in the FC-R and H +-ATPase activities in both roots and nodules, leading to a more efficient Fe supply to nodulating tissues. The strong increase in PEPC activity and organic acid content, in the Flamingo root nodules, suggests that under iron deficiency nodules can modify their metabolism in order to sustain those activities necessary to acquire Fe directly from the soil solution

    Involvement of source-sink relationship and hormonal control in the response of Medicago ciliaris — Sinorhizobium medicae symbiosis to salt stress

    No full text
    In order to explore the relationship between leaf hormonal status and source-sink relations in the response of symbiotic nitrogen fixation (SNF) to salt stress, three major phytohormones (cytokinins, abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid), sucrose phosphate synthase activity in source leaves and sucrolytic activities in sink organs were analysed in two lines of Medicago ciliaris (salt-tolerant TNC 1.8 and salt-sensitive TNC 11.9). SNF (measured as nitrogenase activity and amount of N-fixed) was more affected by salt treatment in the TNC 11.9 than in TNC 1.8, and this could be explained by a decrease in nodule sucrolytic activities. SNF capacity was reflected in leaf biomass production and in the sink activity under salinity, as suggested by the higher salt-induced decrease in the young leaf sucrolytic activities in the sensitive line TNC 11.9, while they were not affected in the tolerant line TNC 1.8. As a consequence of maintaining sink activities in the actively growing organs, the key enzymatic activity for synthesis of sucrose (sucrose phosphate synthase) was also less affected in the mature leaves of the more tolerant genotype. Ours results showed also that the major hormone factor associated with the relative tolerance of TNC 1.8 was the stimulation of abscisic acid concentration in young leaves under salt treatment. This stimulation may control photosynthetic organ growth and also may contribute to a certain degree in the maintenance of coordinated sink-source relationships. Therefore, ABA may be an important component which conserves sucrose synthesis in source leaves
    corecore