494 research outputs found
Non-liftable Calabi-Yau spaces
We construct many new non-liftable three-dimensional Calabi-Yau spaces in
positive characteristic. The technique relies on lifting a nodal model to a
smooth rigid Calabi-Yau space over some number field as introduced by the first
author and D. van Straten.Comment: 16 pages, 5 tables; v2: minor corrections and addition
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Deep learning has the potential to revolutionize quantum chemistry as it is
ideally suited to learn representations for structured data and speed up the
exploration of chemical space. While convolutional neural networks have proven
to be the first choice for images, audio and video data, the atoms in molecules
are not restricted to a grid. Instead, their precise locations contain
essential physical information, that would get lost if discretized. Thus, we
propose to use continuous-filter convolutional layers to be able to model local
correlations without requiring the data to lie on a grid. We apply those layers
in SchNet: a novel deep learning architecture modeling quantum interactions in
molecules. We obtain a joint model for the total energy and interatomic forces
that follows fundamental quantum-chemical principles. This includes
rotationally invariant energy predictions and a smooth, differentiable
potential energy surface. Our architecture achieves state-of-the-art
performance for benchmarks of equilibrium molecules and molecular dynamics
trajectories. Finally, we introduce a more challenging benchmark with chemical
and structural variations that suggests the path for further work
Quantum-Chemical Insights from Interpretable Atomistic Neural Networks
With the rise of deep neural networks for quantum chemistry applications, there is a pressing need for architectures that, beyond delivering accurate predictions of chemical properties, are readily interpretable by researchers. Here, we describe interpretation techniques for atomistic neural networks on the example of Behler–Parrinello networks as well as the end-to-end model SchNet. Both models obtain predictions of chemical properties by aggregating atom-wise contributions. These latent variables can serve as local explanations of a prediction and are obtained during training without additional cost. Due to their correspondence to well-known chemical concepts such as atomic energies and partial charges, these atom-wise explanations enable insights not only about the model but more importantly about the underlying quantum-chemical regularities. We generalize from atomistic explanations to 3d space, thus obtaining spatially resolved visualizations which further improve interpretability. Finally, we analyze learned embeddings of chemical elements that exhibit a partial ordering that resembles the order of the periodic table. As the examined neural networks show excellent agreement with chemical knowledge, the presented techniques open up new venues for data-driven research in chemistry, physics and materials science.EC/H2020/792572/EU/Machine Learning for Catalytic Carbon Dioxide Activation/MachineCatBMBF, 01IS14013A, Verbundprojekt: BBDC - Berliner Kompetenzzentrum für Big DataBMBF, 01IS18037A, Verbundprojekt BIFOLD-BZML: Berlin Institute for the Foundations of Learning and DataEC/H2020/725291/EU/Beyond Static Molecules: Modeling Quantum Fluctuations in Complex Molecular Environments/BeStM
Automatic identification of chemical moieties
In recent years, the prediction of quantum mechanical observables with machine learning methods has become increasingly popular. Message-passing neural networks (MPNNs) solve this task by constructing atomic representations, from which the properties of interest are predicted. Here, we introduce a method to automatically identify chemical moieties (molecular building blocks) from such representations, enabling a variety of applications beyond property prediction, which otherwise rely on expert knowledge. The required representation can either be provided by a pretrained MPNN, or be learned from scratch using only structural information. Beyond the data-driven design of molecular fingerprints, the versatility of our approach is demonstrated by enabling the selection of representative entries in chemical databases, the automatic construction of coarse-grained force fields, as well as the identification of reaction coordinates
- …